Advances on Process Heat Utilization: Systemic Review

  IJRES-book-cover  International Journal of Recent Engineering Science (IJRES)          
  
© 2022 by IJRES Journal
Volume-9 Issue-4
Year of Publication : 2022
Authors : Zakiyyu Muhammad Sarkinbaka, Aliyu Buba Ngulde
DOI : 10.14445/23497157/IJRES-V9I4P101

How to Cite?

Zakiyyu Muhammad Sarkinbaka, Aliyu Buba Ngulde, "Advances on Process Heat Utilization: Systemic Review," International Journal of Recent Engineering Science, vol. 9, no. 4, pp. 1-8, 2022. Crossref, https://doi.org/10.14445/23497157/IJRES-V9I4P101

Abstract
Waste heat has been described as the energy disposed of or given off to the environment. This waste energy, in many cases, arises from process operations in the industry. Heat utilisation has shown to be of great effect when considering process requirements, costs, and unit-specific operation in terms of operating parameters. For this reason, the need to understand and utilize the waste heat becomes imminent. This report discusses the various scientific reviews on heat recovery and utilization applicable to process industries. This study is limited to heat utilization review and its impact on process industries. It will help industries position strategies and build top-notch technologies that will help improve existing process systems.

Keywords
Waste heat, Process utilization, Pinch technology.

Reference
[1] C. C. . Reddy, S. . Naidu, and G. . Rangaiah, "Waste Heat Recovery Methods and Technologies," Singapore, 2013.
[2] M. Capocelli, "Waste Heat Recovery in the Oil & Gas Sector," pp.1–11, 2019.
[3] N. Ozalp, "Utilization of Heat, Power, and Recovered Waste Heat for Industrial Processes in the U . S .," J. Energy Res. Technol., vol.131, pp.1–11, 2016, Doi: 10.1115/1.3120382.
[4] J. O. Kang and S. C. Kim, "Heat Transfer Characteristics of Heat Exchangers for Waste Heat Recovery From a Billet Casting Process," Energies, Mdpi, vol.12, pp.1–13, 2019, Doi: Doi:10.3390/En12142695.
[5] M. M. Kida, Z. M. Sarkinbaka, A. M. Abubakar, and A. Z. Abdul, "Neural Network Based Performance Evaluation of a Waterflooded Oil Reservoir," Int. J. Recent Eng. Sci., vol.8, no.3, pp.1–6, 2021, Doi: 10.14445/23497157/Ijres-V8i3p101.
[6] A. S. Grema, M. K. Mahlon, T. Usman Habu, and K. Abubakar S, "Enhancing Oil Recovery Through Waterflooding," Arid Zo. J. Eng. Technol. Environ., vol.16, no.3, pp.561–568, 2020.
[7] V. Andersson, "Excess Heat Utilisation in Oil Refineries – Ccs and Algae-Based Biofuels," Chalmers University of Technology Göteborg, Sweden, 2016.
[8] R. Diana, S. Fumuassuca, M. Santos, and A. A. C. Barros, "Pinch Analysis Applied To Atmospheric Distillation Column," Angolan Miner. Oil Gas J., vol.1, pp.11–15, 2020.
[9] N. Gangar, S. Macchietto, and C. N. Markides, "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps : an International Technoeconomic Comparison," Energies, Mdpi, vol.13, pp.2560, 2020, Doi: Doi:10.3390/En13102560.
[10] A. Yasmine, R. Norman, S. Joyce, W. Yaodong, and R. P. Anthony, "Low Grade Thermal Energy Sources and Uses From the Process Industry in the Uk," Appl. Energy, Elsevier, vol.89, pp.3–20, 2012, Doi: 10.1016/J.Apenergy.2011.06.003.
[11] E. Svensson, M. Morandin, and S. Harvey, "Characterization and Visualization of Industrial Excess Heat for Different Levels of onSite Process Heat Recovery," Int. J. Energy Res. John Wiley Sons Ltd., vol.43, pp.7988–8003, 2019, Doi: 10.1002/Er.4787.
[12] S. Popli, P. Rodgers, and V. Eveloy, "Trigeneration Scheme for Energy Efficiency Enhancement in a Natural Gas Processing Plant Through Turbine Exhaust Gas Waste Heat Utilization," Appl. Energy, vol.93, pp.624–636, 2012, Doi: 10.1016/J.Apenergy.2011.11.038.
[13] C. Wang, R. Han, K. Hagos, X. Ji, S. Zhang, and J. Chen, "Review on Heat-Utilization Processes and Heat-Exchange Equipment in Biogas Engineering," J. Renew. Sustain. Energy, vol.8, pp.1–18, 2016, Doi: 10.1063/1.4949497.
[14] M. Ros and G. D. Zupancic, "Heat and Energy Requirements in Thermophilic Anaerobic Sludge Digestion," Renew. Energy, vol.28, pp.2255–2267, 2003, Doi: 10.1016/S0960-1481(03)00134-4.
[15] P. Minergy, "Optimization of Biogas Plants Using Digesters Heating Technologies," 2013. Http://Www.Minergynepal.Com (Accessed May 04, 2021).
[16] Y. H. Kim, "Design and Control of Energy-Efficient Distillation Columns," Korean J. Chem. Eng., vol.32, no.4, pp.1–9, 2016, Doi: 10.1007/S11814-016-0124-4.
[17] D. J. Jang and Y. H. Kim, "A New Horizontal Distillation for Energy Saving with a Diabatic Rectangular Column," Korean J. Chem. Eng., vol.32, no.4, pp.1–6, 2015, Doi: 10.1007/S11814-015-0048-4.
[18] B. C. Kim, H. H. Chun, and Y. H. Kim, "Energy-Efficient Diabatic Distillation Using a Horizontal Distillation Column," Ind. Eng. Chem. Res., vol.52, pp.14927–14935, 2013, Doi: Dx.Doi.Org/10.1021/Ie4013997.
[19] Y. Wang Et Al., "Advanced Exergy and Exergoeconomic Analysis of an Integrated System Combining Co2 Capture-Storage and Waste Heat Utilization Processes Yinglong," Energy, vol.20, pp.119600, 2020, Doi: 10.1016/J.Energy.2020.119600.
[20] B. S. Bagheri, R. Shirmohammadi, S. M. S. Mahmoudi, and M. A. Rosen, "Optimization and Comprehensive Exergy-Based Analyses of A Parallel Flow Double-Effect Water-Lithium Bromide Absorption Refrigeration System," Appl. Therm. Eng., vol.152, pp.643–653, 2019, Doi: 10.1016/J.Applthermaleng.2019.02.105.
[21] A. Yang, Y. Su, W. Shen, I. Chien, and J. Ren, "Multi-Objective Optimization of Organic Rankine Cycle System for the Waste Heat Recovery in the Heat Pump Assisted Reactive Dividing Wall Column," Energy Convers. Manag., vol.199, pp.112041, 2019, Doi: 10.1016/J.Enconman.2019.112041.
[22] M. Variny Et Al., "An Investigation of the Techno-Economic and Environmental Aspects of Process Heat Source Change in a Refinery," Process. Mdpi, vol.7, no.776, pp.1–28, 2019, Doi: Doi:10.3390/Pr7110776.
[23] R. Reimert and M. Schad, "Process Heat From Modularized Htr," Nucl. Eng. Des., vol.251, pp.244–251, 2012, Doi: 10.1016/J.Nucengdes.2011.10.035.
[24] K. S. S. Christie, T. Horseman, and S. Lin, "Energy Efficiency of Membrane Distillation : Simplified Analysis, Heat Recovery, and the Use of Waste-Heat," Environ. Int., vol.138, pp.105588, 2020, Doi: 10.1016/J.Envint.2020.105588.
[25] G. Guan, X. Yang, R. Wang, and A. G. Fane, "Evaluation of Heat Utilization in Membrane Distillation Desalination System Integrated with Heat Recovery," Desalination, pp.6–9, 2015, Doi: 10.1016/J.Desal.2015.01.013.
[26] A. Behzadi, E. Gholamian, E. Houshfar, and A. Habibollahzade, "Multi-Objective Optimization and Exergoeconomic Analysis of Waste Heat Recovery From Tehran' S Waste-To-Energy Plant Integrated with an Orc Unit," Energy, vol.18, 2018, Doi: 10.1016/J.Energy.2018.07.074.
[27] N. Shokati, F. Ranjbar, and M. Yari, "A Comparative Analysis of Rankine and Absorption Power Cycles From Exergoeconomic Viewpoint," Energy Convers. Manag., vol.88, pp.657–668, 2014, Doi: 10.1016/J.Enconman.2014.09.015.
[28] Y. Zhao and J. Wang, "Exergoeconomic Analysis and Optimization of a Flash-Binary Geothermal Power System," Appl. Energy, vol.179, pp.159–170, 2016, Doi: 10.1016/J.Apenergy.2016.06.108.
[29] M. Shekarchian, F. Zarifi, M. Moghavvemi, F. Motasemi, and T. M. I. Mahlia, "Energy, Exergy, Environmental and Economic Analysis of Industrial Fired Heaters Based on Heat Recovery and Preheating Techniques," Energy Convers. Manag., vol.71, pp.51–61, 2013, Doi: 10.1016/J.Enconman.2013.03.008.
[30] Simon Taylor, James Bull, James M. Buick, Jovana Radulovic, "Diesel Engine Waste Heat Harnessing Orc," SSRG International Journal of Thermal Engineering, vol.6, no.1, pp.29-35, 2020. Crossref, Https://Doi.Org/10.14445/23950250/Ijte-V6i1p103
[31] G. Comodi, M. Renzi, and R. Mose, "Energy Efficiency Improvement in Oil Refineries Through Flare Gas Recovery Technique To Meet the Emission Trading Targets," Energy, vol.109, pp.1–12, 2016, Doi: 10.1016/J.Energy.2016.04.080.
[32] A. O. Abdulrahman, D. Huisingh, and W. Hafkamp, "Sustainability Improvements in Egypt's Oil & Gas Industry By Implementation of Flare Gas Recovery," J. Clean. Prod., vol.14, 2015, Doi: 10.1016/J.Jclepro.2014.11.086.
[33] A. Khalili-Garakani, M. Iravaninia, and M. Nezhadfard, "A Review on the Potentials of Flare Gas Recovery Applications in Iran," J. Clean. Prod., vol.279, pp. 123345, 2021, Doi: 10.1016/J.Jclepro.2020.123345.
[34] S. M. Mousavi, K. Lari, G. Salehi, and M. Torabi, "Technical, Economic, and Environmental Assessment of Flare Gas Recovery System : A Case Study," Energy Sources, Part A Recover. Util. Environ. Eff., vol.00, no.00, pp.1–13, 2020, Doi: 10.1080/15567036.2020.1737597.
[35] M. R. Rahimpour, Z. Jamshidnejad, S. M. Jokar, G. Karimi, A. Ghorbani, and A. H. Mohammadi, "A Comparative Study of Three Different Methods for Flare Gas Recovery of Asalooye Gas Refinery," J. Nat. Gas Sci. Eng., vol.4, pp.17–28, 2012, Doi: 10.1016/J.Jngse.2011.10.001.
[36] Ameer Sadath K.T, P.Senthil, Elayaraja.R, "Investigation and Development of Waste Heat Recovery for Sea Water Desalination," Ssrg International Journal of Mechanical Engineering, vol.7, no.1, pp.17-31, 2020. Crossref, Https://Doi.Org/10.14445/23488360/Ijme-V7i1p103
[37] R. Thakar, B. Santosh, and L. Subhash, "Design of Heat Exchanger for Waste Heat Recovery From Exhaust Gas for of Diesel Engine Design of Heat Exchanger Heat Recovery From Exhaust of Diesel Engine Costing Models for Capacity Optimization in Industry 4 .," Procedia Manuf., vol.20, pp.372–376, 2018, Doi: 10.1016/J.Promfg.2018.02.054.
[38] O. P. Arsenyeva Et Al., "Utilisation of Waste Heat From Exhaust Gases of Drying Process," Front. Chem. Sci. Eng, 2016, Doi: 10.1007/S11705-016-1560-8.
[39] G. Oluleye, M. Jobson, R. Smith, and S. J. Perry, "Evaluating the Potential of Process Sites for Waste Heat Recovery," Appl. Energy, 2015, Doi: 10.1016/J.Apenergy.2015.07.011.
[40] G. Oluleye, M. Jobson, and R. Smith, "A Hierarchical Approach for Evaluating and Selecting Waste Heat Utilization Opportunities," Energy, pp.1–19, 2015, Doi: 10.1016/J.Energy.2015.05.086.
[41] G. Oluleye, N. Jiang, R. Smith, and M. Jobson, "A Novel Screening Framework for Waste Heat Utilization Technologies," Energy, 2017, Doi: 10.1016/J.Energy.2017.02.119.
[42] T. He and W. Lin, "Energy Saving Research of Natural Gas Liquefaction Plant Based on Waste Heat Utilization of Gas Turbine Exhaust," Energy Convers. Manag., vol.225, P. 113468, 2020, Doi: 10.1016/J.Enconman.2020.113468.
[43] H. Fang, J. Xia, K. Zhu, Y. Su, and Y. Jiang, "Industrial Waste Heat Utilization for Low Temperature District Heating," Energy Policy, vol.62, pp.236–246, 2013, Doi: 10.1016/J.Enpol.2013.06.104.
[44] J. Hussam, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou, "Waste Heat Recovery Technologies and Applications Waste Heat Recovery Technologies and Applications," Therm. Sci. Eng. Prog., vol.18, 2018, Doi: 10.1016/J.Tsep.2018.04.017.
[45] A. Simeone, Y. Luo, E. Woolley, S. Rahimifard, and C. Boer, "A Decision Support System for Waste Heat Recovery in Manufacturing," Cirp Ann. - Manuf. Technol., vol.65, pp.21–24, 2016, Doi: 10.1016/J.Cirp.2016.04.034.
[46] V. Zare, S. M. S. Mahmoudi, and M. Yari, "on the Exergoeconomic Assessment of Employing Kalina Cycle for Gt-Mhr Waste Heat Utilization," Energy Convers. Manag., vol.90, pp.364–374, 2015, Doi: 10.1016/J.Enconman.2014.11.039.
[47] D. M. Van De Bor, C. A. I. Ferreira, and A. A. Kiss, "Low Grade Waste Heat Recovery Using Heat Pumps and Power Cycles," Energy, pp.1–10, 2015, Doi: 10.1016/J.Energy.2015.06.030.
[48] S. Spoelstra and O. S. L. Bruinsma, "Heat Pumps in Distillation," in Distillation & Absorption Conference, no.November, pp.12–15, 2010.
[49] J. S. Jadhao and D. G. Thombare, "Review on Exhaust Gas Heat Recovery for I . C . Engine," Int. J. Eng. Innov. Technol., vol.2, no.12, pp.93–100, 2013.
[50] A. Soroureddin, A. S. Mehr, S. M. S. Mahmoudi, and M. Yari, "Thermodynamic Analysis of Employing Ejector and Organic Rankine Cycles for Gt-Mhr Waste Heat Utilization : A Comparative Study," Energy Convers. Manag., vol.67, pp.125–137, 2013, Doi: 10.1016/J.Enconman.2012.11.015.
[51] L. Yao, F. Wang, L. Wang, and G. Wang, "Transport Enhancement Study on Small-Scale Methanol Steam Reforming Reactor with Waste Heat Recovery for Hydrogen Production," Energy, vol.175, pp.986–997, 2019, Doi: 10.1016/J.Energy.2019.03.157.
[52] K. Ouyang, H. Wu, S. Huang, and S. Wu, "Optimum Parameter Design for Performance of Methanol Steam Reformer Combining Taguchi Method with Artificial Neural Network and Genetic Algorithm," Energy, vol.138, pp.446–458, 2017, Doi: 10.1016/J.Energy.2017.07.067.
[53] M. Wahlroos and M. Pärssinen, "Future Views on Waste Heat Utilization – Case of Data Centers in Northern Europe," Renew. Sustain. Energy Rev., pp. 1, 2017, Doi: 10.1016/J.Rser.2017.10.058.
[54] R. Loni, G. Najafi, E. Bellos, F. Rajaee, Z. Said, and M. Mazlan, "A Review of Industrial Water Heat Recovery System for Power Generation with Organic Rankine Cycle: Recent Challenges and Future Outlook," J. Clean. Prod., vol.20, pp.125070, 2020, Doi: 10.1016/J.Jclepro.2020.125070.
[55] H. Nami, F. Mohammadkhani, and F. Ranjbar, "Utilization of Waste Heat From Gtmhr for Hydrogen Generation Via Combination of Organic Rankine Cycles and Pem Electrolysis," Energy Convers. Manag., vol.127, pp.589–598, 2016, Doi: 10.1016/J.Enconman.2016.09.043.
[56] B. Zhang, S. Wu, and Q. Chen, "an Optimization Procedure for Retrofitting Process Energy Systems in Refineries," in Proceedings of the 11th International Symposium on Process Systems Engineering, pp.15–19, 2012.Doi: 10.1016/B978-0-444-59506-5.50032-8.
[57] H. Ali Et Al., "Cost Estimation of Heat Recovery Networks for Utilization of Industrial Excess Heat for Carbon Dioxide Absorption," Int. J. Greenh. Gas Control, vol.74, pp.219–228, 2018, Doi: 10.1016/J.Ijggc.2018.05.003.
[58] R. Ravi, S. Pachamuthu, and P. Kasinathan, "Computational and Experimental Investigation on Effective Utilization of Waste Heat From Diesel Engine Exhaust Using a Fin Protracted Heat Exchanger," Energy, vol.200, pp. 117489, 2020, Doi: 10.1016/J.Energy.2020.117489.
[59] Nirmal Pratap Singh, Dr. J.P.Kesari, "Pinch Analysis and Heat Integration in a Sugar Industry Using Hint Software," SSRG International Journal of Mechanical Engineering, vol.6, no.8, pp.6-15, 2019. Crossref, Https://Doi.Org/10.14445/23488360/Ijme-V6i8p102
[60] S. M. Lai, H. Wu, C. W. Hui, B. Hua, and G. Zhang, "Flexible Heat Exchanger Network Design for Low-Temperature Heat Utilization in Oil Refinery," Asia-Pac. J. Chem. Eng., no.October 2010, pp.713–733, 2011, Doi: 10.1002/Apj.
[61] S. Karellas, A. Schuster, and A. Leontaritis, "Influence of Supercritical Orc Parameters on Plate Heat Exchanger Design," Appl. Therm. Eng., vol.33–34, pp.70–76, 2012, Doi: 10.1016/J.Applthermaleng.2011.09.013.
[62] M. M. Kida and Z. M. Sarkinbaka, "Multivariate Optimization of a Jacketed Heating System : A Genetic Algorithm Approach," Int. J. Recent Eng. Sci., vol.8, no.2, pp.20–25, 2021, Doi: 10.14445/23497157/Ijres-V8i2p104.
[63] T. Singh, A. Kumar, and P. Baredar, "Experimental and Analytical Studies of Earth – Air Heat Exchanger ( Eahe ) Systems in India : A Review," Renew. Sustain. Energy Rev., vol.19, pp.238–246, 2013, Doi: 10.1016/J.Rser.2012.11.023.
[64] D. Ð. C and B. Frankovi, "Wastewater Heat Utilization Through Heat Pumps : the Case Study of City of Rijeka Zen Bali," J. Clean. Prod., vol.231, pp.207–213, 2019, Doi: 10.1016/J.Jclepro.2019.05.235.
[65] O. Zadakbar, A. Vatani, and K. Karimpour, "Flare Gas Recovery in Oil and Gas Refineries," Oil Gas Sci. Technol., vol.63, no.6, pp.705–711, 2008, Doi: Doi: 10.2516/Ogst:2008023.
[66] E. Yazdani, J. Asadi, Y. Hosseinzadeh, and P. Kazempoor, "Flare Gas Recovery By Liquid Ring Compressors-System Design and Simulation," J. Nat. Gas Sci. Eng., vol.84, pp. 103627, 2020, Doi: 10.1016/J.Jngse.2020.103627.
[67] H. Ma Et Al., "Experimental Study on Heat Pipe Assisted Heat Exchanger Used for Industrial Waste Heat Recovery," Appl. Energy, vol.169, pp.177–186, 2016, Doi: 10.1016/J.Apenergy. 2016.02.012.