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Abstract - In this paper, we considered the use of neural networks in the identification and prediction of a waterflooded reservoir 

consisting of eight injection wells and one production well with a 40% porosity. The data used for the non-linear identification 

was generated from a reservoir modelled in MATLAB Reservoir Simulation Toolbox (MRST). Likewise, in this study, the effect 

of the number of hidden neurons on the accuracy, Mean Squared Error and oil production prediction of the reservoir were 

investigated. The study asserted the efficacy of the neural networks as regards their predictive capacity. For the oil production 

rate, a mean squared error was recorded to be minimal for 2 hidden neurons as compared to the other three cases of neuron 

number. For water production rate, 8 hidden neurons were observed to be optimal compared to other cases. Oil and water 

production rate for a peak NPV value of 3 billion US dollars was recorded to be 2000m3/day and 4500m3/day, respectively. The 

response was optimal for all cases except for the net present value, which requires a more substantial amount of data for the 

neural network model. 
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1. Introduction 
Reservoir waterflooding is a secondary recovery 

technique used in the production of oil through the use of an 

enhanced pressure-driven state. This pressure-driven state is 

enforced by subjecting the reservoir to a waterflood, which in 

turn increases the reservoir pressure forcing the trapped oil to 

flow out to the surface [1]. This enhanced technique is applied 

when the reservoir pressure in its natural state has been 

depleted overtime due to early recovery. The waterflooding 

technique is commonly used due to its effectiveness and the 

fact that water is easily available and cheap to implement [2]. 

Due to large geological uncertainties in reservoirs, simulation 

models will greatly require more sophisticated prototypes so 

as to meet up with the geological intricacies [3]. 

 

Technological innovation has become increasingly 

prevalent in making scientific research more efficient and 

accurate. Reservoir engineers are faced with finding suitable 

tools that will enhance the productivity of oil, and as such, 

knowledge expansion on uncertain reservoirs is [4]. New ways 

of making oil recovery efficient and profitable have gained 

traction over the years. Such kind of technology, like the use 

of machine learning and deep learning, has become 

predominant in the oil and gas industry. Conventional 

techniques might pose a drawback in modelling approaches, 

especially when a more complex reservoir is studied [5]. In 

model processing, engineers are faced with constitutive data 

modelling problems, and this sometimes may result in trial and 

error estimation. But with the advent of function 

approximation, precision is identified, mostly in problems 

such as well log data, seismic surveys etc. [6]. 

 Computational limitations have become one major 

challenge in identifying reservoirs, especially those with 

complex geological properties [7]. Investigating efficient 

production or Net Present Value might be rigorous and time 

taken. Monumental oil well data, rock and fluid properties 

will require extensive study for cases of modelling. However, 

sophisticated prototyped reservoir models might pose design 

intricacies due to geological uncertainties and modelling 

inaccuracies. This key limitation will require substantial 

computational techniques such as Artificial Neural Networks. 

 

1.1. Artificial Neural Networks 

Artificial intelligence is a field of computer science that 

mimics the behaviour of the human brain, not necessarily in 

its complete state but at some level of accuracy and usability 

[8]. Artificial Neural networks are basically mathematical 

structures depicting the biological neurons [9], used mostly in 

function approximation. Studies have shown that Engineering 

models have to be considerably less complex than the brain 

[10], and as such complex systems are easily identified. 

http://www.internationaljournalssrg.org/
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Fig. 1 Single node structure and multilayer neural networks [10] 

 

Neural networks are able to fix data in an input and output 

fashion [11]. The earliest neural network is the perceptron 

network, designed by Frank Rosenbalt. It is made up of input 

and output layers, although the major setback of the 

perceptron model is that it is unable to model a non-linear 

system. Various neural network models have been designed 

for specific purposes. Such are the feed-forward neural 

networks used in most literatures [11]. Neural network is 

defined by its ability to model nonlinear systems without the 

use of an inherent model. Based on the stipulation by [12], a 

machine exhibits an autonomous ability when it is able to 

perceive, process and execute. These paradigms give neural 

networks their inherent ability to perform complex tasks 

efficiently without recourse to the underlying nature of the 

system being studied. Neural networks are identified based on 

their learning techniques [13], which are supervised and 

unsupervised learning. Supervised learning requires an input 

and output or target datasets, while unsupervised requires only 

the input datasets. It is mostly used in identifying 

discrepancies within data. Supervised learning is used in 

modelling regression problems, while unsupervised learning 

is used in modelling classification and clustering problems. 

Obtaining qualitative models is solely dependent on the 

inherent nature of available data [14]. 

 

Research papers on the application of artificial neural 

networks to oil reservoir systems have being identified by 

several authors. [9] applied artificial neural networks to model 

an oil and gas production rates as a function of measured 

pressure, injection and production data. [2] predicated a water 

flooding reservoir performance in stratified reservoirs by the 

use of a cheap corelation derived from a proxy model. Other 

predication techniques were observed and compared by 

reviewing their applicability. 

 
Fig. 2 General feedforward workflow model [6] 

 

 [15] applied a nonlinear Autoregressive with exogenous 

input (NARX) neural network model to identify a certain 

waterflooding reservoir for the purpose of optimization. [3] 

proposed a data-driven modelling approach to predict 

production efficiency by reducing computational and 

observational costs. The prediction was carried out as a 

function of heterogeneity and injection well placements. [5] 

applied artificial neural networks to predict reservoir porosity, 

saturation and lithofacies identification. [16] implemented the 

use of artificial neural network function approximation to 

address reservoir challenges such as reservoir fluid properties 
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in the absence of PVT analysis, average reservoir pressure and 

oil production prediction. [17] investigated a neural networks-

based study on an oilfield situated at Stringtown, West 

Virginia, were the result of the simulation was compared with 

five years of actual field data. [18] applied artificial neural 

networks in predicting oil recovery and CO2 storage capacity 

in residual oil zones, where the training data were generated 

from well operations, geological factors and parameter 

uncertainties. 
  

In this paper, we considered the use of neural networks in 

the identification and prediction of a waterflooding reservoir. 

The data used for the non-linear identification was generated 

from a reservoir modelled in MATLAB Reservoir Simulation 

Toolbox (MRST). Likewise, in this study, the effect of the 

number of hidden neurons on the accuracy, Mean Squared 

Error and oil production prediction of the reservoir were 

investigated. 
 

2. Methodology 
The reservoir modelled in MATLAB Reservoir toolbox 

consists of a 400ft by 400ft by 100ft reservoir grid divided into 

20 by 20 by 10 cells, respectively.  8 horizontal injection wells 

and 1 production well were used, where a permeability with a 

porosity of 40% was generated. The reservoir is heterogenous 

in phase, having both oil and water. Other reservoir properties 

specified were the fluid viscosity and density. 

 
Fig. 3 Reservoir grid with permeability distribution 

 
Fig. 4 Reservoir grid with wells 

2.1. Neural Networks Configuration 
 There are different neural network models built for 
specific purposes. Such models can be the feedforward neural 
networks for regression or classification or recurrent neural 
networks for time series analysis. However, these models are 
inherent design limitations as a result of the nature of the data. 
For example, an autoregressive with Moving-Average 
(ARIMA) model cannot be used for nonlinear time series 
forecasting due to its linear nature. For such cases, the Non-
linear Autoregressive with Exogenous Inputs (NARx) model 
is implemented. For situations where there is an estimate in 
error feedback, Non-linear Autoregressive Moving Average 
with Exogenous Inputs (NARIMAx) model is best suited. 
 

 
Fig. 5 Neural networks architecture for oil production 

 

 
Fig. 6 Neural networks architecture for water production 
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For most reservoir engineering problems, the nature of 

data is time controlled, such that its approximation is intrinsic 

to time lags. Recurrent neural network is known for its 

dynamic and recursive driven condition. For our work, we 

implemented a NARx neural network architecture for non-

linear identification. 

 

A NARx model is a kind of recurrent neural network that 

operates on the bases of a feedback network [18]. The 

network’s output is fed back into the network as the new input 

for a given time step. A nonlinear system is described by the 

equation: 

 

𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, … … . 𝑦𝑡−𝑝) + 𝜀𝑡                  (1) 

 

were 𝑓(𝑦𝑡−1, 𝑦𝑡−2, … … . 𝑦𝑡−𝑝) is the non-linear function 

mapping the previous observation to the next output. 𝜀𝑡 is the 

error at each estimated time interval. The recursive nature of a 

time series neural networks follows a differential equation 

given as: [19] 

 

𝜏
𝑑𝑦𝑖

𝑑𝑡
= −𝑦𝑖 + 𝑔(𝑥𝑖 + ∑ 𝑤𝑖𝑗𝑣𝑗𝑗 )               (2) 

 

Were 𝜏 denotes the time coefficient, 𝑥𝑖 denotes the external 

input of the network, 𝑔(…) denotes the activation function, 𝑦𝑖  

denotes the network’s output, 𝑣𝑗 denotes the output of the 

hidden neurons. 

For the reservoir system, the well injection rates and bottom 

hole pressure for injection wells were used as the network’s 

input data, while the well production rates, Net present value, 

and oil formation volume factor was used as the network’s 

output data. Here, the first network has 2 hidden neurons, the 

second network has 4 hidden neurons, the third network has 6 

hidden neurons, and the fourth network has 8 hidden neurons. 
 

60% data was used for training, while 15% and 25% were 

used for validation and testing, respectively. The Levenberg 

– Marquardt training algorithm was used likewise.  

3. Discussion of the Result 
Figure 7 - 8 shows the neural networks performance 

variation of water production rate, oil production rate, Net 

present value and oil formation volume factor, respectively, 

with a change in the number of hidden neurons. 

 

In Figure 5, the mean squared error recorded for the water 

production rate was seen to be slightly reduced with an 

increase in hidden neurons for the test and validation data, 

although the peak increase was not instantaneous for the 

validation data. A rapid error increase and decrease were 

recorded for the training data. At 4 hidden neurons, the error 

was slightly high, but with 8 hidden neurons, the error was 

reduced. The model accuracy was constant at about 99%, with 

an increase in hidden neurons. 

 
 

 
Fig. 7 Network’s performance for water production rate 

 

The oil production rate’s network was shown to have a 

reduction in mean square error (Fig. 8). Although with 2 

neurons, the test data was shown to have a greater error but 

subsequently reduced with more hidden neurons. The model 

accuracy was also shown to be 99% percent for the training, 

validation and test data, respectively. 

 

Model accuracy is necessary for a good prediction. It 

requires extensive optimal formulation and generation of good 

data. Sometimes, data inaccuracies could pose a challenge in 

identifying proper model properties that depict the studied 

process. Nonlinear systems are complex to identify. No matter 

the flexibility of a neural network, if it is not properly 

modelled to suite the process data, it will equally produce poor 

results. 
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Fig. 8 Network’s performance for oil production rate 

 The validity of the neural network was confirmed for the 

oil and water production rate. The neural network for oil and 

water production rate can be used and tested on future data due 

to its minimal error and good accuracy.  

 

Minimal error was recorded for the water production rate 

for a simulation period of 450 seconds (Fig. 7). Random error 

value was also shown to be insignificant. This implies that the 

prediction accuracies of the model will be substantially high. 

The error variation for the oil production rate was obvious 

with minimal effect, which makes it good for prediction. The 

NPV response error was recorded as high for the first 50 

seconds of simulation but reduced with more simulation time.  

 

 

 
Fig. 9 Network’s response to oil production rate and net present value, 

respectively (8 Hidden neurons) 

 

 
Fig. 10 Oil and water production rate 
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Fig. 11 Net present value 

 

3.1. Reservoir Simulation 

The reservoir simulation results are given in Figure (10 - 

11). More production time might, in some cases, reduce the 

economic value of the reservoir, possibly due to depleting oil 

rate in the reservoir. This implies that production time will be 

reduced for a reservoir with the given configuration. A Peak 

NPV value of 800 million dollars was recorded at a period of 

about 850 days but began decreasing exponentially. For the 

NPV, no cumulative was taken. 

 

The oil production rate is recorded to be 2000 m3/day for 

the next 1000 days and later began decreasing due to depleting 

reservoir bottom hole pressure. However, neural networks will 

require a large amount of data to validate the efficacy of the 

reservoir in terms of its net present value and oil and water 

production rate. 

 

4. Conclusion 
A waterflooding reservoir was studied, and data were 

generated and used for neural network modelling. Significant 

model accuracy was recorded for 500 simulation data points 

consisting of the injection rates for all wells, oil and water 

production rate, net present value, and oil and water formation 

volume factor. 

 

The neural network was found to be effective for the 

studied data but might require a large dataset to improve the 

prediction efficacy of the reservoir. Complex reservoirs will 

require a more sophisticated neural network. The model 

simulation showed that with more large data, more hidden 

neurons might be needed. Future studies should be carried out 

on the optimal analysis of the neural network that consists of 

monumental datasets. 
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