Carbon Capture Technology and its potential to Global Emission: Mini-Review

  IJRES-book-cover  International Journal of Recent Engineering Science (IJRES)          
  
© 2022 by IJRES Journal
Volume-9 Issue-4
Year of Publication : 2022
Authors : Zakiyyu Muhammad Sarkinbaka
DOI : 10.14445/23497157/IJRES-V9I4P102

How to Cite?

Zakiyyu Muhammad Sarkinbaka, "Carbon Capture Technology and its potential to Global Emission: Mini-Review," International Journal of Recent Engineering Science, vol. 9, no. 4, pp. 9-15, 2022. Crossref, https://doi.org/10.14445/23497157/IJRES-V9I4P102

Abstract
Carbon capture is one of the most effective measures to mitigate greenhouse gas emissions. With the evolution of several techniques, some implications are encountered based on design implementation and cost of operation. Estimations have shown that greenhouse emissions will incur a 30% increase by 2040. As the global world population increases, one common challenge is maintaining the world energy demand, thereby regulating the rate at which greenhouse gases are emitted. As a result, the need to provide an efficient and cost-effective way to capture these gases becomes imminent. Several studies have described the various technologies involved in carbon capture and their limitations. This review paper described the carbon capture technologies used in today's industries and how recent innovations were captured on those existing designs.

Keywords
CO2 capture, Greenhouse gas, Global emission.

Reference
[1] E. S. Rubin, J. E. Davison, and H. J. Herzog, “The Cost of Co2 Capture and Storage,” Int. J. Greenh. Gas Control, 2015, Doi: 10.1016/J.Ijggc.2015.05.018.
[2] A. S. Grema, M. K. Mahlon, U. H. Taura, and A. S. Kolo, "Enhancing Oil Recovery Through Waterflooding," Arid Zo. J. Eng. Technol. Environ., vol.16, no.3, pp.561–568, 2020.
[3] M. K. Mondal, H. K. Balsora, and P. Varshney, "Progress and Trends In Co2 Capture / Separation Technologies : A Review," Energy, vol.46, no.1, pp.431–441, 2012, Doi: 10.1016/J.Energy.2012.08.006.
[4] J. Albo, P. Luis, and A. Irabien, "Carbon Dioxide Capture From Flue Gases Using a Cross-Flow Membrane Contactor and the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethylsulfate," Ind. Eng. Chem. Res., vol.49, pp.11045–11051, 2010.
[5] C. Yu, C. Huang, and C. Tan, "A Review of Co2 Capture by Absorption and Adsorption," Aerosol Air Qual. Res., vol.12, pp.745–769, 2012, Doi: 10.4209/Aaqr.2012.05.0132.
[6] A. A. Olajire, "Co2 Capture and Separation Technologies for End-of-Pipe Applications - A Review," Energy, vol.35, no.6, pp.2610– 2628, 2010, Doi: 10.1016/J.Energy.2010.02.030.
[7] V. Darde, K. Thomsen, W. J. M. Van Well, and E. H. Stenby, "Chilled Ammonia Process for Co2 Capture," Energy Procedia, vol.1, no.1, pp.1035–1042, 2009, Doi: 10.1016/J.Egypro.2009.01.137.
[8] J. Van Straelen, F. Geuzebroek, N. Goodchild, and G. Protopapas, "Co2 Capture for Refineries , A Practical Approach," Energy Procedia, vol.1, no.1, pp.179–185, 2009, Doi: 10.1016/J.Egypro.2009.01.026.
[9] Q. Wang, J. Luo, Z. Zhong, and A. Borgna, "Co2 Capture By Solid Adsorbents and their Applications : Current Status and New Trends," Energy Environ. Sci., vol.4, no.42, pp.42–55, 2011, Doi: 10.1039/C0ee00064g.
[10] J. C. Abanades Et Al., "Emerging Co2 Capture Systems," Int. J. Greenh. Gas Control, 2015, Doi: 10.1016/J.Ijggc.2015.04.018.
[11] A. torrisi Et Al., "Functionalized Mofs for Enhanced Co2 Capture," Cryst. Growth Des. Am. Chem. Soc., vol.10, no.7, pp.2839–2841, 2021, Doi: 10.1021/Cg100646e.
[12] B. Dutcher, M. Fan, and A. G. Russell, "Amine-Based Co2 Capture Technology Development from the Beginning of 2013-A Review," Acs Appl. Mater. Interface, 2015, Doi: 10.1021/Am507465f.
[13] F. A. Chowdhury, H. Yamada, T. Higashii, K. Goto, and M. onoda, "Co2 Capture by Tertiary Amine Absorbents : A Performance Comparison Study Co 2 Capture by Tertiary Amine Absorbents : A Performance Comparison Study," Ind. Eng. Chem. Res., vol.52, no.October 2017, pp.8323–8331, 2013, Doi: 10.1021/Ie400825u.
[14] S. N. Talapaneni Et Al., "Nanostructured Carbon Nitrides for Co2 Capture and Conversion," 2019. Doi: 10.1002/Adma.201904635.
[15] P. H. M. Feron and C. A. Hendriks, "Co2 Capture Process Principles and Costs," Oil Gas Sci. Technol., vol.60, no.3, pp.451–459, 2005.
[16] L. Bingyun, Y. Duan, L. David, and M. Bryan, "Advances in Co2 Capture Technology : A Patent Review," Appl. Energy, vol.102, pp.1439–1447, 2013, Doi: Http://Dx.Doi.Org/10.1016/J.Apenergy.2012.09.009.
[17] Nishad P, Mohammed Thanshayar, Shahana V M, Sreevidya K G, Majida V, Sivakumar, "Carbon Footprint: A Case Study," SSRG International Journal of Civil Engineering, vol.5, no.5, pp.7-11, 2018. Crossref, Https://Doi.Org/10.14445/23488352/Ijce-V5i5p102
[18] E. I. Koytsoumpa, C. Bergins, and E. Kakaras, "The Co2 Economy : Review of Co2 Capture and Reuse Technologies," J. Supercrit. Fluids, vol.132, pp.3–16, 2018, Doi: 10.1016/J.Supflu.2017.07.029.
[19] T. Kuramochi, A. Ramírez, W. Turkenburg, and A. Faaij, "Comparative Assessment of Co2 Capture Technologies for Carbon-Intensive Industrial Processes," Prog. Energy Combust. Sci., vol.38, no.1, pp.87–112, 2012, Doi: 10.1016/J.Pecs.2011.05.001.
[20] L. Li, N. Zhao, W. Wei, and Y. Sun, "A Review of Research Progress on Co 2 Capture, Storage, and Utilization in Chinese Academy of Sciences," Fuel, vol.108, pp.112–130, 2013, Doi: 10.1016/J.Fuel.2011.08.022.
[21] J. Luis, J. Porteiro, R. Pérez-Orozco, D. Patiño, and S. Rodríguez, “Evolution of Co2 Capture Technology Between 2007 and 2017 Through the Study of Patent Activity,” Appl. Energy, vol.211, pp.1282–1296, 2018, Doi: 10.1016/J.Apenergy.2017.11.107.
[22] P. Luis, T. Van Gerven, and B. Van Der Bruggen, "Recent Developments In Membrane-Based Technologies for Co2 Capture," Prog. Energy Combust. Sci., vol.38, no.3, pp.419–448, 2012, Doi: 10.1016/J.Pecs.2012.01.004.
[23] T. C. Merkel, H. Lin, X. Wei, and R. Baker, "Power Plant Post-Combustion Carbon Dioxide Capture : An Opportunity for Membranes," J. Memb. Sci., vol.359, pp.126–139, 2010, Doi: 10.1016/J.Memsci.2009.10.041.
[24] M. Bram Et Al., "Testing of Nanostructured Gas Separation Membranes in the Flue Gas of a Post-Combustion Power Plant," Int. J. Greenh. Gas Control, vol.5, no.1, pp.37–48, 2011, Doi: 10.1016/J.Ijggc.2010.08.003.
[25] R. Faiz, M. H. El-Naas, and M. Al-Marzouqi, "Significance of Gas Velocity Change During the Transport of Co2 Through Hollow Fiber Membrane Contactors," Chem. Eng. J., vol.168, pp.593–603, 2011, Doi: 10.1016/J.Cej.2011.01.029.
[26] R. Faiz and M. Al-Marzouqi, "Co2 Removal From Natural Gas At High Pressure Using Membrane Contactors : Model Validation and Membrane Parametric Studies," J. Memb. Sci., vol.365, pp.232–241, 2010, Doi: 10.1016/J.Memsci.2010.09.004.
[27] S. A. M. Marzouk, M. H. Al-Marzouqi, M. H. El-Naas, A. Nadia, and I. Zahoor M, "Removal of Carbon Dioxide From Pressurized Co2 – Ch4 Gas Mixture Using Hollow Fiber Membrane Contactors," J. Memb. Sci., vol.351, pp.21–27, 2010, Doi: 10.1016/J.Memsci.2010.01.023.
[28] A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, and R. Gupta, "Post-Combustion Co2 Capture Using Solid Sorbents : A Review," Ind. Eng. Chem. Res., vol.51, pp.1438–1463, 2012, Doi: Dx.Doi.Org/10.1021/Ie200686q.
[29] Y. Wang, L. Zhao, A. Otto, M. Robinius, and D. Stolten, "A Review of Post-Combustion Co2 Capture Technologies From Coal-Fired Power Plants," Energy Procedia, vol.114, pp.650–665, 2017, Doi: 10.1016/J.Egypro.2017.03.1209.
[30] E. Blomen, C. Hendriks, and F. Neele, "Capture Technologies : Improvements and Promising Developments," Energy Procedia, vol.1, no.1, pp.1505–1512, 2009, Doi: 10.1016/J.Egypro.2009.01.197.
[31] D. Berstad, R. Anantharaman, and P. Nekså, "Low-Temperature Co2 Capture Technologies - Applications and Potential," Int. J. Refrig., 2013, Doi: 10.1016/J.Ijrefrig.2013.03.017.
[32] M.D. Saputra, A. A. P. Susastriawan, I.M. Suardjaja, B.W. Sidharta, "Performance and Co/Co2 Emission of Three Different Biomass Stoves Fed With Coconut Shell Briquettes," SSRG International Journal of Mechanical Engineering, vol.6, no.10, pp.8-11, 2019. Crossref, Https://Doi.Org/10.14445/23488360/Ijme-V6i10p102
[33] M. Ramdin, T. W. De Loos, and T. J. H. Vlugt, "State-of-the-Art of Co2 Capture With Ionic Liquids," Ind. Eng. Chem. Res., 2012, Doi: Dx.Doi.Org/10.1021/Ie3003705.
[34] Y. Zeng, R. Zou, and Y. Zhao, "Covalent Organic Frameworks for Co2 Capture," Adv. Mater., vol.28, pp.2855–2873, 2016, Doi: 10.1002/Adma.201505004.
[35] S. Kumar, J. H. Cho, and I. Moon, "Ionic Liquid-Amine Blends and Co2 Bols : Prospective Solvents for Natural Gas Sweetening and Co2 Capture Technology — A Review," Int. J. Greenh. Gas Control, vol.20, pp.87–116, 2014, Doi: 10.1016/J.Ijggc.2013.10.019.
[36] M. Karimi, M. Hillestad, and H. F. Svendsen, "Investigation of Intercooling Effect in Co2 Capture Energy Consumption," Energy Procedia, vol.4, pp.1601–1607, 2011, Doi: 10.1016/J.Egypro.2011.02.030.
[37] M. voldsund Et Al., "Comparison of Technologies for Co2 Capture from Cement Production — Part 1 : Technical Evaluation," Energies, Mdpi, vol.12, no.559, 2019, Doi: 10.3390/En12030559.
[38] S. O. Gardarsdottir Et Al., "Comparison of Technologies for Co2 Capture from Cement Production — Part 2 : Cost Analysis," Energies, Mdpi, vol.12, no.542, 2019, Doi: 10.3390/En12030542.
[39] R. W. Baker, B. Freeman, J. Kniep, Y. Huang, and T. C. Merkel, "Co2 Capture from Cement Plants and Steel Mills Using Membranes," Ind. Eng. Chem. Res., 2018, Doi: 10.1021/Acs.Iecr.8b02574.
[40] R. Nuria, M. Ramon, and J. C. Abanades, "Co2 Capture From Cement Plants Using Oxyfired Precalcination and/ Or Calcium Looping," Environ. Sci. Technol., vol.46, pp.2460–2466, 2012, Doi: Dx.Doi.Org/10.1021/Es2030593.
[41] M. Hornberger, R. Spörl, and G. Scheffknecht, "Calcium Looping for Co2 Capture In Cement Plants – Pilot Scale Test," Energy Procedia, vol.114, pp.6171–6174, 2017, Doi: 10.1016/J.Egypro.2017.03.1754.
[42] K. Lindqvist, S. Roussanaly, and R. Anantharaman, "Multi-Stage Membrane Processes for Co2 Capture From Cement Industry," Energy Procedia, vol.63, pp.6476–6483, 2014, Doi: 10.1016/J.Egypro.2014.11.683.
[43] M. C. Romano, R. Anantharaman, A. Arasto, and D. Can, "Application of Advanced Technologies for Co2 Capture From Industrial Sources," Energy Procedia, vol.37, pp.7176–7185, 2013, Doi: 10.1016/J.Egypro.2013.06.655.
[44] M. Naranjo, D. T. Brownlow, and A. Garza, "Co2 Capture and Sequestration In the Cement Industry," Energy Procedia, vol.4, pp.2716–2723, 2011, Doi: 10.1016/J.Egypro.2011.02.173.
[45] E. Adu, Y. Zhang, and D. Liu, "Current Situation of Carbon Dioxide Capture, Storage, and Enhanced Oil Recovery In the Oil and Gas Industry," Can. J. Chem. Eng., vol.9999, pp.1–29, 2018, Doi: 10.1002/Cjce.23393.
[46] A. Baghban, M. Bahadori, and T. Kashiwao, "Modelling of Gas to Hydrate Conversion for Promoting Co2 Capture Processes in the Oil and Gas Industry," Pet. Sci. Technol., vol.34, no.7, pp.642–651, 2016, Doi: 10.1080/10916466.2016.1156126.
[47] Victor Okechukwu Nwatu, "Energy Consumption, Industrial Production and Co2 Emissions in Two Major African Countries," SSRG International Journal of Economics and Management Studies, vol.7, no.2, pp.177-185, 2020. Crossref, Https://Doi.Org/10.14445/23939125/Ijems-V7i2p126
[48] H. Jin, L. Gao, W. Han, and H. Hong, "Prospect Options of Co2 Capture Technology Suitable for China," Energy, vol.35, no.11, pp.4499–4506, 2010, Doi: 10.1016/J.Energy.2009.05.031.
[49] P. H. M. Feron, A. Cousins, K. Jiang, R. Zhai, and M. Garcia, "An Update of the Benchmark Post-Combustion Co2 -Capture Technology," Fuel, vol.273, P. 117776, 2020, Doi: 10.1016/J.Fuel.2020.117776.
[50] A. Tjernshaugen, "Technological Power as a Strategic Dilemma : Co2 Capture and Storage in the International Oil and Gas Industry," Glob. Environ. Polit., vol.12, no.1, pp.8–29, 2012.
[51] H. Liu, B. G. Tellez, T. Atallah, and M. Barghouty, "The Role of Co2 Capture and Storage In Saudi Arabia' S Energy Future," Int. J. Greenh. Gas Control, vol.11, pp.163–171, 2012, Doi: 10.1016/J.Ijggc.2012.08.008.
[52] M. M. Kida, Z. M. Sarkinbaka, A. M. Abubakar, and A. Z. Abdul, "Neural Network Based Performance Evaluation of a Waterflooded Oil Reservoir," Int. J. Recent Eng. Sci., vol.8, no.3, pp.1–6, 2021, Doi: 10.14445/23497157/Ijres-V8i3p101.
[53] M. M. Kida and Z. M. Sarkinbaka, "Multivariate Optimization of a Jacketed Heating System : A Genetic Algorithm Approach," Int. J. Recent Eng. Sci., vol.8, no.2, pp.20–25, 2021, Doi: 10.14445/23497157/Ijres-V8i2p104.
[54] E. Stavitski Et Al., "Complexity Behind Co2 Capture on Nh2 -Mil-53 ( Al )," Langmuir, vol.53, pp.3970–3976, 2011, Doi: Dx.Doi.Org/10.1021/La1045207.
[55] A. Al-Mamoori, A. Krishnamurthy, A. A. Rownaghi, and F. Rezaei, "Carbon Capture and Utilization Update," Energy Technol, vol.5, pp.834–849, 2017, Doi: 10.1002/Ente.201600747.
[56] N. Macdowell et Al., "An Overview of Co2 Capture Technologies," Energy Environ. Sci., vol.3, pp.1645–1669, 2010, Doi: 10.1039/C004106h.