Effect of the substrate material and thickness on the performance of the Rectangular Patch Microstrip UWB Antenna

  IJETT-book-cover  International Journal of Recent Engineering Science (IJRES)          
  
© 2021 by IJRES Journal
Volume-8 Issue-4
Year of Publication : 2021
Authors : M. Firoz Ahmed, M. Hasnat Kabir, Abu Zafor Md. Touhidul Islam
  10.14445/23497157/IJRES-V8I4P103

MLA 

MLA Style: M. Firoz Ahmed, M. Hasnat Kabir, Abu Zafor Md. Touhidul Islam  "Effect of the substrate material and thickness on the performance of the Rectangular Patch Microstrip UWB Antenna"International Journal of Recent Engineering Science 8.4(2021):15-18. 

APA Style: M. Firoz Ahmed, M. Hasnat Kabir, Abu Zafor Md. Touhidul Islam. Effect of the substrate material and thickness on the performance of the Rectangular Patch Microstrip UWB Antenna  International Journal of Recent Engineering Science, 8(4), 15-18.

Abstract
The demand for broadband antennas has increased significantly in recent years. High-frequency and high-speed data networking are found to be commonly used. The factors affecting the bandwidth of a microstrip antenna are discussed in this article. The antenna extension is regulated by two major parameters. The thickness of the dielectric substrate is one and the material of the substrate is another. This study assesses the performance characteristics of a rectangular patch microstrip antenna with varying substrate thickness and material. The resonant frequency, bandwidth, and return loss characteristic impacts are all affected by changing one of the parameters while keeping the other unchanged. The rectangular patch microstrip antenna designed for the microstrip feed line operates at 6.85 GHz (UWB).

Reference
[1] D. M. Pozar, A review of bandwidth enhancement techniques for Microstrip antennas, IEEE Press, New York (1995).
[2] Z. Niang, X. M. Qing, Research and development of planar UWB antennas, IEEE APMC-2005 Proceedings (2005).
[3] R.E. Munson, Conformal Microstrip phased arrays, IEEE Trans Antennas propagation, 22 (1974) 74-78.
[4] R. Garg, Progress in Microstrip antennas, IETE Technical Review, 18 (2-3) (2001) 85-98.
[5] Federal Communications Commission (FCC), Revision of Part 15 of the Commission's Rules Regarding Ultra Wideband Transmission Systems, First Report, and Order, FCC 02-48(2002).
[6] G. Kumar, K.P. Ray, Broadband Microstrip Antennas, Artech House (2003).
[7] C. A. Balanis, Antenna Theory - Analysis and Design, John Wiley and Sons, NY (1997).
[8] T. Prakoso, Impedance Matching Improvement of Half Cut Broadband Printed Monopole Antenna with Microstrip Feeding, International Journal of Electrical and Computer Engineering (IJECE), 3(5) (2013) 612-617.
[9] A. Singh, K. Kamakshi, M. Aneesh, J. A. Ansari, Slots and Notches Loaded Microstrip Patch Antenna for Wireless Communication, TELKOMNIKA Indonesian Journal of Electrical Engineering, 13(3) (2015) 584-594.
[10] K. K. Parashar, Design and Analysis of I-Slotted Rectangular Microstrip Patch Antenna for Wireless Application, International Journal of Electrical and Computer Engineering (IJECE), 4(1) (2014) 31-36.
[11] D. Z. Kim, W. Son, W. G. Lim, H. L. Lee, J. W. Yu, Integrated planar monopole antenna with microstrip resonators having band-notched characteristics, IEEE Trans. Antennas Propag., 58 (2010) 2837-2842.
[12] A. M. Abbosh, M. E. Bialkowski, Design of UWB planar band notched antenna using parasitic element, IEEE Trans. Antennas Propag., 57 (2009) 796-799.
[13] J. R. Kelly, P. S. Hall, P. Gardner, Band-notched UWB antenna incorporating a microstrip open loop resonator, IEEE Trans. Antennas Propag., 59(2011) 3045-3048.
[14] S. Elajoumi, A. Tajmouati, J. Zbitou, A. Errkik, A. M. Sanchez, M. Latrach, Bandwidth enhancement of compact microstrip rectangular antennas for UWB applications, Telkomnika, 17(3) (2019)1559 – 1568.
[15] D. Rusdiyanto, C. Apriono, D. W. Astuti, Muslim, Bandwidth and Gain Enhancement of Microstrip Antenna using Defected Ground Structure and Horizontal Patch Gap, SINERGI, 25(2021) 153–158.
[16] G. V. Raviteja, B. T. V. Madhan, M. K. Sree, N. Avinash, P. R. S. Naga Surya, Gain and Bandwidth Considerations for Microstrip Patch Antenna Employing U and Quad L shaped Slots with DGS and Parasitic Elements for WiMax / WiFi Applications, EJERS, European Journal of Engineering Research and Science, 5 (2020) 327- 330.
[17] A. Swetha, K. R. Naidu, Gain Enhancement of an UWB Antenna Based on a FSS Reflector for Broadband Applications, Progress In Electromagnetics Research C, 99 (2020)193- 208.
[18] D. Gopi1, A. R. Vadaboyina, J. R. K. K. Dabbakuti, DGS based monopole circular‑shaped patch antenna for UWB applications, SN Applied Sciences, 3(2) (2021) 1-12.
[19] K. W. S. A. Kharusi, N. Ramli, S. Khan, M. T. Ali, M. H. A. Halim, Gain Enhancement of Rectangular Microstrip Patch Antenna using Air Gap at 2.4 GHz, International Journal of Nanoelectronics and Materials, 13(2020) 211- 224.
[20] E. K. I. Hamad, G. Nady, Bandwidth Extension of Ultra-wideband Microstrip Antenna using Metamaterial Double-side Planar Periodic Geometry, Radioengineering, 28(1) (2019) 25-32.
[21] J. Vijayalakshmi, G. Murugesan, A Miniaturized High-Gain (MHG) Ultra-Wideband Unidirectional Monopole Antenna for UWB Applications, Journal of Circuits, Systems and Computers, 28(13) (2019) 1950230.
[22] M. V. Yadav, S. Baudha, A compact mace shaped ground plane modified circular patch antenna for ultra-wideband applications, Telecommunications and Radio Engineering, 79(5) (2020) 383-397.
[23] B. Hammache, A. Messai, I. Messaoudene, T. A. Denidni, Compact stepped slot antenna for ultra-wideband applications, International Journal of Microwave and Wireless Technologies, (2021) 1-7.
[24] B. Hammache, A. Messai, I. Messaoudene, T. A. Denidni, Compact ultra-wideband slot antenna with three notched band- characteristics, International Journal of RF and Microwave Computer-Aided Engineering, 30( 5) (2020) e22146.
[25] T. Sarkar, A. Ghosh, S. Chakraborty, L. L. K. Singh, S. Chattopadhyay, A new insightful exploration into a low profile ultra-wide-band (UWB) microstrip antenna for DS-UWB applications, Journal of Electromagnetic Waves and Applications, (2021) 1-19.
[26] K. G. Tan, S. Ahmed, A. Hamdi, C. X. Ming, K. Abdulwasie, et al., FR-4 Substrate Based Modified Ultrawideband Antenna with Gain Enhancement for Wireless Applications, Journal of Engineering Science and Technology Review, 12(4) (2019) 108 - 112.

Keywords
Bandwidth, Microstrip antenna, UWB, Return loss, Resonant frequency.