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Abstract - Reservoir engineers are faced with constitutive reservoir estimation due to monumental data. In some cases, these 

datasets are difficult to analyze and extrapolate. Geological uncertainties can also affect the way reservoir data are managed. 

This intricacy has, in one way or the other, created many discrepancies in data utilization, determining how this reservoir data 

are incorporated into production forecasting. For this reason, data generated from these reservoir operations are used to obtain 

surrogate models via smart systems (Deep learning). This review aims to evaluate the systemic application of deep learning 

models to oil reservoir processes by considering various models, such as the Time series models. We first looked at the current 

trend of technological innovation in the oil and gas sector. We reviewed work done by several authors in different areas of 

reservoir modelling and simulation and how their works impact global oil and gas production by implementing smart technology. 

With the tremendous applicability of smart systems, oil reservoir management has become less complex due to automation. 

Artificial Neural Networks have been shown to improve the production efficiency of oil reservoirs even though geological 

uncertainties are inherent. 
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1. Introduction 
Reservoir engineers are faced with constitutive reservoir 

estimation due to monumental data. In some cases, these 

datasets are difficult to analyze and extrapolate. Geological 

uncertainties can also affect how reservoir data are managed 

[1]. This intricacy has, in one way or another, created many 

discrepancies in data utilization, determining how this 

reservoir data are incorporated into production forecasting. 

For this reason, data generated from these reservoir operations 

are used to obtain surrogate models via smart systems (Deep 

learning). Deep learning is a branch of data science that 

involves interconnected networks that function like the human 

brain. These networks receive and process information to 

produce an unseen outcome. 

 

There are scenarios where oil resources are degraded over 

time due to undetermined reservoir properties and 

inappropriate recovery mechanisms. For example, in 

waterflooding recovery, one of the challenges encountered is 

early water breakthrough which depletes sweep efficiency 

even though integrating inflow control valves ICVs is 

appropriate. ICVs are control valves used to regulate oil flow 

in an oil well. Oil wells that incorporate ICVs are known as 

intelligent wells [2]. It gives rise to the implementation of 

intelligent systems for both local and international oil 

exploration and development [3]. To facilitate reservoir 

estimations, the choice of network architecture is very 

important [4]. Machine learning applied to an oil reservoir 

 

estimation can be determined depending on the nature and 

quality of the data. However, for some cases, like the stratified 

reservoirs, simple neural network models will not suffice [5]. 

Complex networks like the Recurrent Neural Network (RNN) 

and Nonlinear Autoregressive with Exogenous Input (NARx) 

might suffice, depending on the nature and amount of data. 

One major advantage is that the sophisticated network with 

appropriate parameter specification will give good 

predictability. Although, With the advent of optimization, 

petroleum exploration has become efficiently realized in the 

presence of geological uncertainties. Most oil reservoirs can 

potentially produce about 60% of the original oil volume in a 

reservoir by employing the basic enhanced oil recovery 

technique [6]. It necessitates the need to employ optimal 

design strategies to improve recovery. Studies have shown that 

the rate of demand for energy increases intermittently [7]. 

Still, major oil and gas companies have recently initialized the 

idea of increasing production efficiency through automated 

systems. Conventional enhanced recovery could still be 

insufficient and needed to be digitalized, which is why 

technological innovation has become increasingly prevalent 

[8]. 

 

1.1. Artificial Neural Networks (ANN) 

Artificial Intelligence has been described as the branch of 

data science that deals with the ability of machines to simulate 

the functionalities of the brain [9]. However, these models are 

known to be limited to cognitive abilities, such as the ability 

to extrapolate knowledge from unprocessed data. AI in 

http://www.internationaljournalssrg.org/
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engineering has gained much traction over the years through 

the applications of several paradigms. Among the most used 

AI paradigms in Engineering are knowledge-based systems, 

neural networks, genetic algorithms, fuzzy logic, and 

intelligent agent [10]. AI has been categorized into usability 

forms. One of these forms is the machine learning technique. 

This technique simulates the brain exclusively. Machine 

learning techniques are subdivided into other classes, such as 

K-means, KNN, and Deep Learning. Deep learning is an 

intrinsic kind of learning that applies the concept of brain 

neurons. The interconnection of several neurons forms these 

neurons to form a network called the neural network. It brings 

us to the neural network concept, which forms the bases for 

all Artificial Intelligent systems. Our review of the production 

prediction of oil reservoir systems will be investigated for 

neural network systems. 

 

Several neural networks architecture has been widely 

employed depending on the nature of the problem needed to 

be solved. Although with the recent implementations of the 

use of this technology, more advanced and optimal neural 

network models are being developed. For example, recently, a 

new kind of architecture called the graph neural network 

(GNN) has emerged as a major tool for predicting the 

structures of graph domains. Some of the intrinsic functions 

of the GNNs are in performing complex tasks like clustering, 

link prediction, and node classification [11]. This work will 

briefly describe some concepts of neural networks used to 

identify oil reservoirs. 

 

The Artificial neural network is a complex system of 

interconnecting units called neurons. The neurons are usually 

divided into layers (input, hidden, output). The input values 𝒙 

are combined with some so-called transient parameter called 

the weights 𝑤 and a constant parameter called bias 𝑏 to give 

an output which is further combined to an activation function 

𝑓 to produce some certain output 𝑦 (Figure 2). The weight's 

value determines the error rate the neural network model can 

generate. So, in other to mitigate these errors, a technique 

called training or learning is used to optimize the network by 

observing the values of the weights that minimize the error. A 

neural network in which the weights are fixed is referred to as 

a fixed network such that 
dW

dt
≠0. Networks in which the 

weights can change are called adaptive networks, such that 
𝑑𝑊

𝑑𝑡
= 0. 

 

Furthermore, adaptive networks are categorized into three 

learning classes: supervised learning, unsupervised learning, 

and reinforcement learning. A target set is given for supervised 

learning and then compared with the computed output. 

Example of supervised learning is the regression, Time series 

forecasting, etc. Unsupervised learning is called self-

organizing learning, whereby the neural network can 

understand patterns and properties from a given data set. 

 

Fig. 1 ANN schematics for Multi-layered Network 

 
Fig. 2 Vectorized form of multi-layered Neural Networks 

An example of unsupervised learning is clustering and 

classification analysis. Reinforcement learning is mostly 

concerned with how intelligent systems can derive knowledge 

by exclusively studying the environment they dwell in. In 

essence, reinforcement learning was designed to give a more 

advanced study than the supervised and unsupervised learning 

methods [12]. However, this learning has not been able to 

describe its environmental inductions efficiently. The basic 

flowchart for basic neural network training is shown in Figure 

3. 

 

1.2.  Mathematical Background of ANN 

In training a multilayer network system, a method called 

backpropagation is used. It is the most common method for 

obtaining the optimal weights of many interconnected 

neurons. 
 

Mathematically, backpropagation is written in the form: 

wupdated = wold - ɳ∇E                          (1) 

Where w is the weight, ɳ is the learning rate, and E is the 

function used to estimate the trained network's overall 

performance. 
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Fig. 3 Backpropagation scheme 

Minimizing error through the backpropagation method is 

implemented by the gradient descent method. Although one 

major drawback of backpropagation is that it requires a longer 

time for the change of weight to be initialized, and it is 

invariably impossible to estimate new weight values for a 

large number of neurons. 

 

The error is considered as the difference between the true 

value and the neural network computed value. Hence, if the 

true value is given as 𝑡0 and the computed value is 𝑦0, then the 

error function can be given as [13]: 

E = 
1

2
∑ (t0-y

0
)
2

output                           (2) 

The error derivative can be written as described by I. 

Mackie [14]; 

dE

dy0

 = -(t0-y
0
)                              (3) 

Reformulating the error derivative to 𝑍0 by applying the 

chain rule function; 

∂E

∂z0
 = 

∂y0

∂Z0

∂E

∂y0

 = y
0
(1-y

0
)

∂E

∂y0

                (4) 

Calculating the error derivative to 𝑦0; 

∂E

∂yh

 = ∑
∂z0

∂y0

∂E

∂z0
0  = ∑ wh0

∂E

∂z0
0                 (5) 

Equation (5) describes the general concepts of the 

backpropagation scheme for multi-layered networks. 

 

Several training algorithms are employed based on the 

simple and sophisticated network's data structure and 

prediction ability. Such algorithm is the Levenberg-Marqudt 

(LMA), Gradient descent, Bayesian regularization, scaled 

conjugate gradient, and gauss newton. In most complex 

network training like oil reservoir identification, Bayesian 

regularization is commonly used to eliminate data overfitting. 

Regularization is a term used to describe the prevention of data 

fitting problems [15]. It is used to describe the addition of a 

variable term in the error function, as shown in equation (6). 

The variable term can be denoted as L2(x) or ‖w‖2 

Eupdated = Einitial + ‖w‖2                     (6) 

There are two regularization techniques used: the L2 

regularization, which is known as the weight decay, ridge 

regression, or Tikhonov regularization (since it was 

formulated by a Russian mathematician called Andrey 

Tikhonov). The L2 regularization uses a Euclidean norm 

having a vector function x = (x1, x2.. xn), and it can be written 

as; 

‖w‖2  =  √x1
2 + x2

2 + … xn
2                      (7) 

For simplicity, equation (7) can be written as; 

‖𝑤‖2
2  =  x1

2 + x2
2 + … xn

2                     (8) 

The modified form of equation (6) can be written as; 

Eupdated = Einitial + 
γ

n
∑ wi

2
i=1                   (9) 

Where γ is the so-called hyper-parameter known as the 

regularization rate, and it is divided by the size of the batch 

used. Hyper-parameters are constant numbers used to define 

the learning process of an artificial neural network [16]. This 

number does not change during the learning process and can 

only be adjusted manually. Taking the partial derivative of 

equation (9) for the changing weights, we get; 

∂Eupdated

∂w
 = 

∂Einitial

∂w
 + 

γ

n
w                  (10) 

Another regularization technique is the L1 regularization, 

also known as 'lasso' or 'basis pursuit denoising.' In contrast to 

the L2 regularization, which uses the squares of the variable 

term, the L1 regularization uses the absolute values. L2 

regularization is better suited for classification and prediction 

problems. However, in a situation where there is disintegration 

and inconsistent data, L1 regularization is used. 

 

1.3. Time Series Proxy Neural Networks Models 

A time series neural network is important in analyzing 

past observations to help predict future occurrences by 

developing a systematic model based on the pre-specified 

NN model Compare 
Outputs 

Adjust Weights 

Targets 

Inputs 
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data. It is important to note that the problems associated with 

oil reservoir systems are, in all cases, time-dependent. 

Simulation of a basic and complex oil reservoir is carried out 

by observing dynamic changes over a stipulated period. These 

changes, in some cases, can span up to a period of 2 to 7 years, 

depending on the nature and complexity of the oil reservoir. 

The geometry of oil reservoirs is usually produced from 

seismic data, and this data are time-based. However, fixing an 

elementary time scale for this production data is important. 

 

In a broad sense, time series neural networks are networks 

that exhibit time lags. These time lags have shown to be 

effective in predicting the future occurrence of the computed 

observations. Time series predictions are usually classified 

into linear and nonlinear predictions. In the linear times series 

network, the preceding investigation is related to the previous 

observations in a linear manner. An example of a linear time 

series network is the Autoregressive Integrated Moving 

Average (ARIMA) model. The next and past observations are 

related nonlinearly to the nonlinear time series network. It can 

be described in equation (11): 

y
t
 = f (y

t-1
, y

t-2
, ….. y

t-p
) +εt               (11) 

An example of a nonlinear time series network is the 

Nonlinear Autoregressive with exogenous inputs (NARx) 

model and the nonlinear autoregressive moving average with 

exogenous input (NARIMAx). The major difference between 

the two is that, in the NARx, there is the feedback of the 

network output as the new input, while in the NARIMAx, both 

the network output and error are simultaneously fed back as 

new inputs. Linear and nonlinear neural networks are 

generally called recurrent neural networks (RNNs). 

 

2. Review Methodology 
In this review, we first looked at the current trend of 

technological innovation in the oil and gas sector. The basic 

concept of artificial neural networks was discussed. We 

reviewed work done by several authors in different reservoir 

modelling and simulation areas and how their work impacts 

global oil and gas production by implementing smart 

technology such as Deep learning. Figure 4 gives a detailed 

overview of the review carried out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Methodology of review 

3. Discussion of Review 

Literature gave progressive facts and application of 

intelligent systems to oil reservoir prediction. It can be seen in 

Figure 6, which shows reservoir property estimation based on 

intelligent history matching. Effective contributions using 

automated systems have been applied to geophysical 

exploration, logging curve reconstruction, well logging, 

drilling and completion methods, surface facility engineering, 

etc. [17] predicted the performance of a vertical heterogeneous 

reservoir by implementing three neural network structures 

which include the backpropagation (BP), convolutional neural 

network (CNN) and long short-term memory (LSTM). The 

performance evaluation of the deep network was characterized 

based on their training time and how well they captured 

precision on their respective predictabilities. The input dataset 

for the model is the oil production rate, water cut, and injection 

pressure, while the output dataset is the vertical permeability. 

However, it is important to note that the prediction 

characteristics were done on dynamic data generated from the 

prototyped model. A statistical test strategy was carried out to 

investigate the model's performance. Some statistical tests 

include average relative deviation (ARD) and average 

absolute relative deviation (AARD). The relevant formula is 

shown as follows [17]: 

ARD% = 
100

N
∑ (

Xi
data-Xi

model

Xi
data )N

i=1                (12) 

AARD% = 
100

N
∑ (|

Xi
data-Xi

model

Xi
data |)  N

i=1            (13) 

Where N is the total number of datasets, Xi
data is the 

unprocessed data values, Xi
model is the processed data value 

Reservoir 

Modelling Via 

Metaheuristic 

Technique 

Reservoir 

Modelling Via 

Reinforcemen 

T Learning 

Forward And 

Inverse Ai 

Models 

Optimal Feed 

Forward Oil 

Reservoir 

Modelling 

Well Control/ 

Placement 

Optimization 

Reservoir 

Heterog 

EiNity 

ANN 



Thlama Mperiju Mainta  et al. / IJRES, 9(5), 1-10, 2022 

 

5 

generated by the neural network model. The study's results 

showed that a high accuracy characterized the predictive 

performance of the CNN model compared to BP and LSTM. 

The statistical result, such as the average absolute relative 

deviation (AARD) for the CNN model, was recorded at 

11.51%. 

 

3.1. ANN for Reservoir Heterogeneity and Well Control 

Optimization 

J. Zhou et al. [11] implemented a neural network based on 

a forward-looking and inverse model to predict the production 

performance of steam-flooded reservoirs by considering 

reservoir heterogeneity and its corresponding time lag 

datasets. Production uncertainties were also analyzed using 

forward-looking ANN models. This study used steam 

injection rate, bottom hole pressure (BHP), steam quality, well 

distance, and permeability distribution as the ANN model 

input data. In contrast, cumulative oil production was used as 

the ANN model output data. This data characterization is 

exclusively applied to the forward-looking ANN model, 

whereas cumulative oil production and permeability 

distribution were used as the input dataset for the inverse 

design model.  

 

The relative error was investigated using equation (12) to 

validate the model. The kriging interpolation generated the 

permeability distribution for the basic reservoir model. From 

the analysis, it was shown that the forward-looking model 

produced more accurate results. In contrast, the inverse model 

was shown to have the ability to retrieve production 

parameters for the heterogeneous reservoir. However, no 

investigation was done to obtain the optimal production 

efficiency of the model by considering the number of layers 

and hidden neurons. 

 

A well-control optimization was carried out on an L-

shaped reservoir [19]. This study used a deep learning strategy 

involving a multi-input system. Data from the reservoir 

production history was used as the primary input set, while the 

saturation field was used as the second input set. Afterward, a 

good control optimization was carried out on the actual 

reservoir model. 

 

The study showed that the production dynamics for 

multiple input has better accuracy than a single-input 

prediction model. Also, the recovery factor for the optimized 

reservoir was shown to be 2.76% better than the basic 

reservoir. [20] implemented a hybrid intelligent system for 

predicting the good productivity of horizontal wells in 

drainage areas. The exclusive model used was the least square 

support vector machine (LSSVM) integrated with a 

stochastic-based optimization algorithm known as the particle 

swarm optimization for the effective production performance 

of the reservoir model. The productivity of the horizontal well 

performance was estimated by the equation [21]; 

Jh = 
qo

PR-Pwf
=

kh

141.2βoμo

(
1

ln(
re
'

rw
)-A'+Sf+Sm+SCAh-C'+Dqo

)    (14) 

Where; 

re
'  = √

A

π
                               (15) 

Sf = -ln [
L

4rw
]                         (16) 

The basic logic behind integrating a PSO algorithm was 

to improve the productivity of the horizontal wells by 

optimizing the adjustable parameters of the LSSVM model. It 

was shown that the LSSVM-PSO model increased the oil well 

productivity with high accuracy. The predictive model was 

also asserted to have high predictive efficiency for situations 

where real data may not be available. 

 

[22] applied multiple systems involving multivariate 

partial least squares (PLS), response surface methodology 

(RSM), and neural networks (ANN) to evaluate the predictive 

performance on heavy and medium waterflooded oil 

reservoirs. The PLS was used to reduce the complexities of the 

neural network input parameters. This study was done on an 

oil reservoir in western Canada, including about 120 reservoir 

parameters in 177 waterfloods. The RSM was used to increase 

the quality of the database for 38 reservoir parameters. A 

feedforward neural network was used for the production 

prediction. However, this study has not investigated stratified 

oil reservoirs. This study shows heavy water floods are more 

sensitive to operational parameters than reservoir properties. 

 

3.2. Optimal Feedforward ANN 

An optimal feedforward artificial neural network was 

applied to predict the performance of an oil field flooded with 

a surfactant polymer [23]. The network input data consists of 

the surfactant slug size, polymer slug size, surfactant 

concentration, rock wettability, gravity, optimal salinity in the 

three-phase region, waterflood residual saturations, capillary 

pressure, relative permeability, reservoir heterogeneity, 

interfacial tension, surfactant, and polymer adsorption, 

polymer/surfactant mobility ratio, surfactant/oil bank mobility 

ratio. The network model was trained on 499 simulation 

datasets a chemical flood simulator generated. This study also 

gave an account of the very effect of the network layer and 

neuron number on the model's predictive ability. However, for 

dynamic datasets, the feedforward model will not suffice. 

 

The validation of the ANN model was investigated using 

blind test data, which consists of 125 rows of the input 

parameters. However, the ANN model could not give a 

reliable substitute for estimating the breakthrough time. The 

selection of the optimal number of the hidden layer was 

investigated, such that more precision was confirmed with a 

substantial increase in the hidden layer. The ANN model also 
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performed better than the nonlinear multivariate model, which 

was used in estimating the recoveries. 

 

[24] illustrated the characteristic effect of data-driven 

models for evaluating the performance of heterogeneous 

reservoirs with a difference in porosity and permeability 

values. In this case, the ANN model was considered a proxy 

model for the heterogeneous reservoir. The ANN model was 

constructed for a single output (cumulative production rate) 

and multiple inputs, which includes the mean porosity values 

for each well, the mean permeability values for each well, 

dykstra-parsons coefficient (VDP), residual oil saturation 

(Sro) and residual water saturation (Srw). The dykstra-parsons 

coefficient is a technique used to measure the rate of 

heterogeneity for permeability datasets, and it is estimated 

using equation (12) [25]. The coefficient varies between 0 for 

homogeneous reservoirs and 1 for heterogeneous reservoirs. A 

sensitivity analysis was done to map out the discrepancies 

between the predicted and actual values of the output datasets. 

It was shown that increasing the number of hidden layers for 

a mini-scale dataset will advertently overfit the model, making 

it less accurate to approximate. 

DP = 
𝐾50−𝐾16

𝐾50
=

𝐾84−𝐾50

𝐾84
                (17) 

[26] presented a systematic approach to estimating the 

average pressure of reservoir injection wells using partial data 

recorded from fall-off tests. This technique was shown to help 

map the pressure of a reservoir having monumental injection 

wells. This systematic approach involves the use of artificial 

neural networks. The study was initially carried out on a 

simulation dataset by considering property cases for 

homogenous and heterogeneous reservoirs. Early-time data 

were used for the prediction due to their ability to mitigate fall-

off durations in an oil field. Fall-off curves can be plotted for 

well bottom hole pressure over time. 

 

In the utilization of ANN, the fall of curves was 

normalized for clustering. The essence of normalization was 

to unify the data to an acceptable range. Furthermore, the data 

clusters were formed through a histogram-based algorithm. 

Even though there were predefined clustering methods, such 

as the k-means, the author observed that employing other 

clustering methods (primarily the k-means) will lead to a fall 

of curve disintegration. The ANN model was used to improve 

the prediction accuracy of the clustering results. The 

methodology, however, was implemented to improve the fall-

off test predictability, thereby reducing time duration. 

 

[27] provided a machine learning-based method to 

describe the proximal operability between injection and 

production wells controlled by the interlayer. This method 

used feedforward backpropagation (FFBP) in conjunction 

with the convolutional neural network (CNNs). The input data 

files were used as the oil production rate, water cut, and 

injection volume. The CCN comprises five distinct parts: the 

input layer, the convolutional layer, the pooling layer, the fully 

connected layer, and the output layer. The convolutional layer 

functioned as a feature extractor, while the pooling layer was 

used to decrease the dimension of the extracted data feature. 

Another basic observation the author deduced was the 

connectivity factor between the injection and producer wells. 

The mathematical model of the connectivity coefficient was 

established on the bases of the production and pressure data of 

the injection and producer wells. Also, the effect of the 

interlayer at about a certain angle of connectivity for both the 

injection and producer wells was studied. The training datasets 

were the dynamic data of the average permeability and the 

interlayer angle. The dynamic data were used to calculate the 

average permeability and interlayer angle. The author deduced 

the equation of connectivity as given in equations (18) and 

(19), respectively; 

fk = 
Trained-k

∑ Trained-k
                            (18) 

fθ = 
Trained-θ

∑ Trained-θ
                            (19) 

Were fk and fθ are the training factor, while Trained-k and 

Trained-θ are the training datasets, respectively. The author 

concluded that the CCN had better performance in 

connectivity, and an average absolute relative deviation 

(AARD) below 10.01% was obtained. 
 

The numerical approximation has effectively described 

reservoir uncertainties [28]. These uncertainties usually arise 

from extrapolating the entire rock's properties. However, 

despite being able to approximate this reservoir model 

parameter, computational complexities may arise when the 

reservoir description exhibits more parameters for the 

simulation. 
 

3.3. Metaheuristic Technique for ANN Prediction 

[29] implemented a data-driven proxy model based on a 

metaheuristic algorithm to maximize a waterflooded 

reservoir's net present value (NPV) by controlling its well 

injection rate. Net present value is the difference between cash 

inflow's present value and cash outflow's present value over 

time. It is used in planning and determining capital budgeting 

and investment profitability. An investment with a positive 

NPV depicts that the project is profitable and vice versa. The 

net present value is given in equation (20) [30]: 

Jk = {
∑ [r0(y0,j)

k
-rwp(yw,j)

k]- ∑ rwi(uwi,i)
kNinj

i=1

Nprod

j=1

(1+b)
tk

r

} ∆tk     (20) 

Were rwi stands for the Water injection cost, rwp stands for 

the Water production cost, r0 stands for the Oil price per barrel, 

uwi,i stands for Water injection rate, y
w

 stands for Water 

production rate, y
0,j

 stands for Oil production rate, Nprod stands 

for the number of production wells, Ninj is the number of 

injection wells, b is the Discount factor, ∆tk is the Time step 
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size, tk is the evolution time, τ is the time unit. In some 

modelling cases, the water injection rates are commonly used 

as the decision variables [31]. Two synthetic reservoir model 

was used (2D-model and the Egg model). The optimization 

task was performed using particle swarm optimization and the 

grey-wolf optimization algorithm. It was shown from the 

results that the optimization errors investigated using the 

proxy model were within 5% when compared with the 

reservoir simulator. 
 

3.4. Reinforcement Learning for Oil Reservoir Estimation 

Reinforcement learning is an unsupervised kind of 

learning inspired by environmental conditions. It describes the 

autonomy of machines to learn from their surrounding without 

prior data accumulation. In reinforcement learning, an agent is 

exposed to environmental factors which it derives information 

from. As a result, the learner or agent is left to decide and 

extrapolate decisions on its own from the environment and 

then come up with a solution. However, cognitive abilities in 

this kind of system are limited. 
 

Reinforcement learning has recently been used to 

describe waterflooding optimizations [32]. Here, the 

framework of this learning process was used to optimize a 

reservoir waterflooded process through a method of 

derivative-free and model-free optimization and then 

implemented on a well-studied egg model. The reinforcement 

learning strategy effectively appropriates reservoir learning 

challenges and variables, determining the optimal solution. 
 

3.5. Forward and Inverse AI Models 

In oil reservoir simulation, three possible categories of 

problems may arise. It includes the project design parameters, 

reservoir properties, and field response data. Forward-looking 

models implement the reservoir properties and project design 

parameters to predict the field response, thereby developing 

efficient approaches for better assessment. The inverse model 

uses field data to predict the reservoir properties and project 

design parameters [33]. Studies show that the forward-looking 

model efficiently serves as a proxy for numerical reservoir 

models involving optimization [34] and reservoir uncertainty 

study [35]. Figure 7 gives an extensive workflow that 

implements the reservoir simulation study's forward and 

inverse AI model. 
 

Forward AI models have seen significant improvement in 

incorporating genetic algorithm (GA) and particle swarm 

optimization (PSO) to carry out a multi-objective optimization 

for CO2 water-alternating-gas (WAG). The objective functions 

were the net present value, CO2 storage rate, and oil recovery 

rate [36, 37]. 
 

Owing to the fact that ANN models are inherently able to 

handle complex approximations by reproducing continuous 

functions, [38] developed an ANN proxy model under 

reservoir uncertainties to optimize some set of performance 

indices for different well production configurations. The 

solutions were examined with the Sharpe ratios and the 

frontier plot. 

 

3.6. ANN-Based Well Placement Optimization 

Conventional and nonconventional oil fields are 

described by optimal well placement. In this description of 

good placement, possible simulation is done in drilling 

locations, commonly known as the exhaustive simulation 

method. Optimization techniques have been developed to 

minimize the simulation period of the reservoir model. One 

of these techniques is gradient-based optimization, which 

investigates optimum good placement for a given production 

trajectory [39-43]. Gradient-based optimization is known for 

obtaining optimum solutions rapidly. However, the 

limitation of the gradient-based optimization lies in 

obtaining a local solution that strongly relies on initial 

guesses. Another optimization technique implemented to 

overcome these limitations is the stochastic technique, which 

involves a global search around the optimum. Such 

techniques include the Genetic algorithm (GA), Particle 

Swarm Optimization (PSO), differential evolution, etc. 

Placements based on ANN-based genetic algorithms were 

recently reported by [44] and [45]. Again, stochastic-based 

optimization requires that the simulation runs of the reservoir 

be reduced to obtain a global solution. Oil reservoir data 

generation from a reservoir model, such as sensitivity 

analysis, history matching, and uncertainty evaluation, will 

also require higher simulation runs [46]. Hence, to do this, 

ANN models are used to perform these given conditions. 

Some of the earliest instances of good optimizations using 

ANN were reported by [47], [48]. [49] computed the 

production rate using a production-potential map. [50] 

developed a new algorithm based on a sequential ANN 

model to compute the global solution of optimal drilling sites 

of oil and gas fields. The method was implemented on 

horizontal wells in a coalbed methane oilfield. [51] predicted 

fluid production as a good placement function via a data-

driven ANN approach. Data-driven models require that the 

data are first generated via process identification. Moreover, 

artificial neural networks are inherently data-driven. 
 

4. Conclusion 
Reservoir modelling and simulation have greatly 

impacted production efficiency; however, with today's 

technology, complexities associated with these reservoirs can 

be simplified. Artificial neural networks have been shown to 

improve the production efficiency of oil reservoirs even 

though geological uncertainties are inherent. However, 

Artificial Neural Network architecture must be critically 

selected for such efficiency to be achieved because different 

ANN model architecture has different use and functionality 

based on the prevailing problem. Optimizing these ANN 

architectures has found great importance, especially using 

nature-based optimizers, which are more effective and 

powerful than traditional trial-and-error techniques [52]. It 

was also noted that time lags must be considered for a neural 
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network to identify a reservoir efficiently. It implies that 

complex reservoir models built for production and economic 

predictions must include output feedback. These models are 

sometimes incorporated with optimization algorithms for 

better performance[53]. 
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