
SSRG International Journal of Recent Engineering Science Volume 9 Issue 3, 1-6, May-Jun 2022

ISSN: 2349 – 7157 / https://doi.org/10.14445/23497157/IJRES-V9I3P101 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Code Generation Techniques in Compiler Design:

Conceptual and Structural Review

Johnson Oluwatobi Akanbi1, Allen Akinkitan Ajose2, Kareem Afiss Emiola3

1Department of Computer Science, Tai Solarin College of Education, Omu Ijebu, Ogun State, Nigeria.

2Department of Computer Science, Lead City University, Ibadan, Oyo State, Nigeria.

 3Department of Computer Science, Lead City University, Ibadan, Oyo State, Nigeria.

Received: 10 March 2022 Revised: 20 April 2022 Accepted: 28 April 2022 Published: 12 June 2022

Abstract - A compiler is designed as a language translator to interpret program instructions from high-level language or

object layer to machine code. Compiler configuration covers essential interpretation instruments and blunders discovery and

recovery. It incorporates lexical components, linguistic structures, and semantic mechanisms as the front end and code

generation and streamlining as the back end. In this paper, selected code generation techniques were structurally x-rayed. The

structural review revealed the peculiar strategy and individual traits that serve as a determinant factor for specific

applications and circumstances for execution.

Keywords - Code generation, Compiler design, Computing construct, Syntactic parsing, Intermediate execution.

1. Introduction
The cycle by which the compiler’s code

generator translates some intermediate representation of

source code into a structure (for example, machine code) that

can be quickly performed by a machine is known as code

generation in compiler design (GeeksforGeeks, 2018). The

code produced by the compiler is an item code of some

lower-level programming language, for instance, a low-level

computing construct. The source code written in a more

elevated-level language is changed into a lower-level

language that outcome in a lower-level object code

(Brainkart, 2019).

Programming requires effective tools and a technical

understanding of program development; the computer is

designed to receive users’ input and execute and produce

output. Hence, a typical programming language may not be

suitable for all purposes or problem domains; because every

programming language has its syntactic structure and

compiler (Ayeni & Ojekudo, 2021). Some languages and

programming paradigms that express the logic of a

computation without describing its control flow were

classified as ‘declarative.’

Thus, the execution pattern tends to focus on the

structure and elements of the computer program without side

effects because the attention is more on the operation than

the operands for the computational process (Ojekudo, 2019).

Complex compilers regularly perform multiple

passes over different intermediate structures. This cross-

measure is utilized because many algorithms for code

optimization are simpler to apply in turn or because the

contribution with one streamline depends on the complete

handling conducted by another enhancement (Wikipedia,

2021). The interrelated nature of compilation elements also

works with forming a single compiler that may focus on

various structures, as only the remaining executable stages

(the back-end) necessities to switch from one objective to

another.

The input to the code generator commonly comprises

a tree of parse or an abstraction tree of grammar. The tree is

changed over into a straight grouping of directions, for the

most part, in an intermediate language such as a three-

address code (Douglas & Ojekudo, 2020). Compiler

configuration covers essential interpretation instruments and

blunders discovery and healing. It incorporates the lexical,

linguistic structure, and semantic examination as the front

end and code generation and streamlining as the back end.

Hence, this study focuses on a conceptual review of

execution strategies associated with various code-generation

techniques in compiler design.

2. Related Work
Edwards & Zeng (2006) provided Code generation in

EURASIP Diary on Inserted Frameworks, named Code

Generation in the Columbia Esterel Compiler. In the

distribution, the coordinated linguistic Esterel gives

predictable simultaneousness by receiving a syntax in which

strings walk in sync using a worldwide check and then

impart extremely focused. Its expressive force includes some

http://www.internationaljournalssrg.org/

Johnson Oluwatobi Akanbi et al. / IJRES, 9(3), 1-6, 2022

2

significant pitfalls, not with standing: it is a troublesome

dialect to order into assembly linguistics for von Neumann

systems. The Columbia Esterel is a free tool for testing with

various code aging methods for linguistics. Giving a front-

end and a genuinely conventional simultaneous middle

portrayal, an assortment of back-closes have been created.

Three of the most fully-grown ones were introduced,

depending on program reliance diagrams, dynamic records,

and a virtual machine. Test results were introduced in the

wake of depicting the different calculations utilized in every

one of these strategies, which look at 24 benchmarks

produced by eight unique arrangement methods running on

seven distinct processors.

Ghanville & Graham (2008) distributed an examination

work on compiler code generation in POPL ’08: Procedures

of the fifth ACM SIGACT-SIGPLAN conference on

Standards of programming dialects, January 2008, named

another strategy for compiler code generation. In the

distribution, a calculation is given to interpret a moderately

low-level middle portrayal of a program into get-together

code or machine code for an objective PC. The calculation is

table-driven. A development calculation is utilized to deliver

the table from a useful depiction of the objective machine.

The technique delivers great code for some financially

accessible PCs. It is feasible to retarget a compiler for

another sort of PC by supplanting the table. Likewise,

strategies are given to demonstrate the accuracy of the

interpreter.

Ghanzala & Noman (2016) presented an investigative

study on code generation techniques. In this research,

Algorithmic systems are necessary for NP-complete tasks

like optimum execution planning and register resource

utilization. We can discover ideal timetables by rapidly

limiting the issue of register designation and guidance

booking for postponed load structures to articulation trees.

This postulation presents a quick, ideal code planning

calculation for systems with a deferred heap of one guidance

cycle. Calculations are run in time proportional to the area of

the articulated trees, limiting runtime and register usage.

Also, the calculation is straightforward; it fits on a page.

The prevailing worldview in the current worldwide

register designation is that diagram shading, unlike chart

shading, is the main strategy. Probabilistic Register

Assignment is interesting in its capacity to measure the

probability that a specific worth may be allotted a register

before distribution finishes. By processing the probability

that worth will be relegated to a register by a register

allocator, register up-and-comers contending intensely for

scant registers can be disconnected from those with less

rivalry.

Probability permits the register allocator to focus its

endeavors where the advantage is high and the probability of

an effective designation is likewise high. Its assignment

likewise abstains from backtracking and convoluted live-

range dividing heuristics that plague diagram shading

calculations. Ideal calculations for guidance determination in

tree-organized moderate portrayals depend on unique

programming procedures. Bottom-Up Rewrite System

(BURS) innovation creates incredibly quick creators of codes

by doing all conceivable powerful programming before the

code age. Accordingly, the powerful programming cycle can

be extremely sluggish. Much exertion has gone into

lessening an opportunity to create BURS creator of code to

make BURS innovation more appealing. Current strategies

frequently require a lot of time to deal with a perplexing

system portrayal. This theory makes an enhanced

presentation and quicker BURS table age calculation, which

makes BURS innovation appealing in guidance choices

(Poole & Whyley, 2012).

3. Code Generation Techniques In Compiler
Several techniques can be utilized in code generation in

compiler design; among these are parse tree, peephole

enhancement, simple code generator, and three location

codes.

3.1. Peephole Enhancement Technique

Peephole enhancement is one of the methods utilized in

code generation in compiler design; it is an assertion-by-

explanation code-generation methodology that frequently

creates target code that contains repetitive directions and

imperfect builds. The nature of such objective code can be

improved by applying “streamlining” changes to the

objective program.

It is a straightforward and powerful strategy for further

developing the objective code, a technique for attempting to

work on the exhibition of the objective program by looking

at a short succession of target guidelines (called the

peephole) and supplanting these directions with a more

limited or quicker grouping, at whatever point conceivable.

The peephole is a little moving window on the objective

program. The code in the peephole need not be touching,

albeit a few executions require this. A peephole is the

subordinate machine improvement. The goal of peephole

enhancement is to develop execution further, lessen memory

impression and diminish code size. It is normal for peephole

streamlining that every improvement might generate

openings for extra upgrades. Such attributes incorporate;

redundant instruction elimination, inaccessible codes,

stream-of-control enhancements, mathematical

improvements, strength decrease, getting to machine

guidelines, and utilization of machine idioms.

At code in its original form level, the user can perform

the below:

Johnson Oluwatobi Akanbi et al. / IJRES, 9(3), 1-6, 2022

3

Table 1. Redundant Instruction Elimination

int

add_five

(int a)

 {

 int b,

c;

 y = 5;

 z = a +

b;

 return

c; }

int

add_ten(i

nt a)

 {

 int b;

 y = 5;

 y = a +

b;

 return

b; }

int

add_five(i

nt a)

 {

 int b =

5;

 return a

+ b;

 }

int add_five(int a)

 {

 return a + 5;

 }

At the accumulation position, the compiler looks for

guidelines excess in quality. Numerous stacking and putting

away guidelines might convey a similar significance

regardless of whether some are taken out. An instance is

shown below:

• MOV a, R1

• MOV R1, R2

The principal guidance can be erased and then re-

compose as shown below:

MOV a, R2

3.1.1. Inaccessible Codification

Inaccessible codification is a piece of the program code

that is never gotten to in light of programming development.

Developers might have accidentally composed a code that

will never be reached (Debray, Saumya, et al. 2000).

Syntactic Model

void add_five(int a)

{

return a + 5;

printd("value of a is %d", a);

}

The printed articulation will not ever be executed in the

code area because the program control returns before

executing; subsequently, printed will be eliminated.

3.1.2. Enhancements to the Stream of-Control

Sometimes in a code, the program control bounces back

and forth and does not play out a huge undertaking. These

leaps can be taken out. Consider the following lump of code:

...

MOV R2, R3

GOTO L0

...

L0: GOTO L1

L1: INC R1

Label L0 can be removed from this code because it passes

control to L1. Rather than leaping to L0, then to L1, the

command could straightforwardly arrive at L1, as displayed

beneath:

...

MOV R2, R3

GOTO L1

....

L2: INC R1

3.1.3. Mathematical Improvements

There are events where arithmetical articulations can be

simplified. For instance, the articulation x = x + 0 can be

supplanted by itself, and the articulation x = x + 1 can

essentially be supplanted by INC x.

Strength Decrease

Some tasks devour additional reality. Their ‘strength’

can be diminished by supplanting them with different

activities that burn through less existence yet produce a

similar outcome.

For instance, a * 3 can be supplanted by a << 2, which

includes just one remaining movement. However, the yield

of x * x and x3 is the same, and x3 is considerably

productive to carry out.

Getting to Machine Guidelines

The objective machine can convey more modern

directions which can have the capacity to perform explicit

activities much more productively. On the off chance that the

objective code can oblige those guidelines straightforwardly,

that will not just work on the nature of the code yet

additionally yield more effective outcomes.

Utilization of Machine Idioms

The objective machine might have equipment directions

to execute certain particular activities productively. For

instance, a few machines have auto-augmentation and auto-

decrement tending to modes. These add or deduct one from

an operand previously or in the wake of utilizing its worth.

Utilizing these modes extraordinarily works on the nature of

code when pushing or popping a stack, as in boundary

Johnson Oluwatobi Akanbi et al. / IJRES, 9(3), 1-6, 2022

4

passing. These modes can likewise be utilized in code for

explanations like I: =i+1.

i:=i+1 → i++

i:=i-1 → I- -

3.2. Simple Code Generator Technique

It is another strategy utilized in code generation in

compiler design. In this method, a code generator creates

target code for an arrangement of three-address

proclamations and viably utilizes registers to store operands

of the assertions.

Thinking about the three-address proclamation, d:= e+f

It can have the accompanying succession of codes:

ADD Cj, Ci Cost = 1/if Ci contains e and Cj contains f

(or then again)

ADD f, Ci Cost = 2/in case f is in a memory area

(or then again)

MOV f, Cj Cost = 3/move f from memory to Cj and add

ADD Cj, Ci

3.2.1. Register and Address Description

A register description is utilized to monitor what is

present in each register. The register descriptors show that

every one of the registers is vacant at first.

The area where the present value of the identifier can be

calculated at the specified interval is stored in a location

description.

Input: Fundamental square D of three-address proclamations

Yield: At every assertion J: a= b operation c, we append to J

the exuberance and next-employments of a, b and c.

Strategy: We begin at D’s last assertion and work backwards.

a. Append to proclamation J the data as of now found in the

image table concerning the following uses and vivacity of a,

b and c.

b. Set a “not live” and “no next usage” in the image tables.

c. In the image table, set b and c to “live” and the nearest-

employments of b and c to J.

A code-generation method is evaluated as follows;

As input, the calculation takes an arrangement of three-

address explanations establishing an essential component.

For every three different-address articulations of the structure

a: = b operation c, play out the accompanying activities:

1. Conjure a capacity getreg to decide the area P where the

aftereffect of the calculation b operation c ought to be

put away.

2. Counsel the location description for b to decide b’, the

current area of y. Favor the register for b’ if the worth of

b is present both in storage and a register. If the worth of

b is not as of now in P, produce the guidance MOV b’, P

to put a duplicate of b in P.

3. Create the guidance Operation c’, P where c’ is a present

area of c. Lean toward a register to a storage area in case

c is in both. Keep updating the location description to

demonstrate that ‘a’ is in area P. If ‘a’ is in P, update its

description and eliminate ‘a’ from any remaining

descriptions.

4. If the present b or c upsides have no further uses, are not

live on exit from the square and are in registers, change

the register description to show that those registers will

no longer contain b or c after executing the a: = b

operation c.

3.2.2 Producing Code for Task Explanations

The task f: = (x-y) + (x-z) + (x-z) may be converted into the

accompanying three-address code arrangement:

g: = x – y

h: = x – z

i: = g + h

f: = i + h

with f live toward the conclusion.

Table 2. Model for code arrangement

Statements Code

Generated

Register

Descriptor

Address

Descriptor

 Register

Empty

g: = x – y

MOV x, R1

SUB y, R1

R1 contains g g in R1

h: = x – z

MOV x, R2

SUB z, R2

R1 contains g

R2 contains

h

g in R1

h in R2

i: = g + h

ADD R2, R1 R1 contains i

R2 contains h

h in R1

i in R2

f: = i + h

ADD R2, R1

MOV R1, f

R1 contains f

f in R1

f in R1 and

memory

Johnson Oluwatobi Akanbi et al. / IJRES, 9(3), 1-6, 2022

5

3.3 Tree of Parse Technique

It is a graphical representation determination and another

technique for generating codes in compiler design. It is

useful to understand how strings are generated from the start

image. The foundation of the tree of parse is the first image

of deduction. All the leaf hubs in a parse tree are terminals;

inside hubs are non-terminal, and crossing them all results in

a unique input string (Aho, Sethi & Ullman 2006). A parse

tree represents the associativity and precedence of

administrators. The most profound sub-tree is crossed first;

as a result, the administrator in that sub-tree takes precedence

over the parent hubs administrator.

Punctuation analyzers adhere to creation rules

characterized by setting free sentence structure. How the

creation rules are carried out (determination) divides parsing

into hierarchical and base-up parsing.

Hierarchical parsing is the point at which the parser

begins building the parse tree from the beginning image and

afterward attempts to change the beginning image to the

information while starting with the information images; base-

up parsing attempts to create the tree of parse up to the first

image.

3.4. Three Location Code Techniques

The supplied articulation is divided into a few separate

directions in a three-address code. These instructions can

unquestionably be translated into low-level computing

constructs. Every three location code suggestion contains

three operands. It is a combination of a task manager and a

parallel administrator. The compiler creates them for

carrying out enhancement (Glanville & Graham,2008). This

strategy uses a limit of three locations to address any

assertion. They are executed as a record with the location

fields. An articulation is given as; e := (- g * f) + (- g * h)

The Three-address code is as per the following:

x1 := - c

x2 := b*t1

x3 := - c

x4 := d * t3

x5 := t2 + t4

e := x5

X is utilized as a register in the objective program.

Quintuples and threefold are two (2) structures that can be

used to address the three location codes.

4. Conclusion
Several techniques can be utilized in code generation in

compiler design; among these are peephole enhancement,

parse tree, simple code generator, and three location codes.

Their structural review revealed the peculiar strategy and

individual traits that serve as a determinant factor for specific

applications and circumstances for execution.

References
[1] Gabriel A. Ayeni, and A. Nathaniel Ojekudo, “Theory and Computer Programming for Optimization of Combinatorial Problems,”

International Journal of Engineering in Industrial Research (IJIRES), vol. 2, no. 2, 2021. [CrossRef] [Publisher Link]

[2] H.J. Brainkart, Relevance of Peephole Optimization to Compiler Design, 2021, [Online]. Available: https://www.javatpoint.com/three-

address-code

[3] T.M. Douglas, and A.N. Ojekudo, “Juxtaposing Python with BASIC in the Context of Introductory Programming,” Journal of

Environmental Science, Computer Science and Engineering Technology (JECET), vol. 9, no. 1, pp. 15-20, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[4] A.S. Edwards, and J. Zeng, “Code Generation in Columbia Esterel Compiler,” EURASIP International Journal on Embedded Systems,

2006. [CrossRef] [Google Scholar] [Publisher Link]

[5] Ghanzala Shafi Sheikh, and Noman Islam, “A Qualitative Study of Major Programming Languages to Computer Science Students,”

Journal of Information and Communication Technology, vol. 10, no. 1, pp. 24-34, 2016. [Google Scholar] [Publisher Link]

[6] Geeks for Geeks, Peephole Optimization in Compiler Design, 2018, [Online]. Available: https://www.geeksforgeeks.org/peephole-

optimization-in-compiler-design/

[7] R. Steven Glanville, and Susan L. Graham, “A New Method for Compiler Code Generation,” Proceedings of the 5th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, pp. 231-254, 1978. [CrossRef] [Google Scholar] [Publisher Link]

[8] A.N. Ojekudo, “Computer Programming Bridge,” Port Harcourt: Emmanest Ventures and Data Communication, 2019.

[9] M. Poole, and C. Whyley, Lexical and Semantic Design of Compilers, 2012. [Online]. Available: www.compsci.swan.ac.uk /cschris

/compiler

[10] Wikipedia, The Technical Analysis of Code Generation for Multi Parse Compiler, 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Code_generation_%28compiler%29#cite_note-MuchnickAssociates-1

[11] Alfred Aho et al., Compilers Principles, Techniques & Tools, Addison Wesley, 2006.

https://doi.org/10.22034/jeires.2021.277090.1027
https://www.jeires.com/article_129028.html
https://www.javatpoint.com/three-address-code
https://www.javatpoint.com/three-address-code
https://doi.org/10.24214/jecet.B.9.1.%200
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Juxtaposing+Python+with+BASIC+in+the+Context+of+Introductory+Programming&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Juxtaposing+Python+with+BASIC+in+the+Context+of+Introductory+Programming&btnG=
https://www.citefactor.org/article/index/176884/juxtaposing-python-with-basic-in-the-context-of-introductory-programming
https://doi.org/10.1155/2007/52651
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Code+Generation+in+Columbia+Esterel+Compiler%2C+EURASIP&btnG=
https://jes-eurasipjournals.springeropen.com/articles/10.1155/2007/52651#citeas
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Qualitative+Study+of+Major+Programming+Languages+to+Computer+Science+Students&btnG=
https://www.researchgate.net/profile/Noman-Islam/publication/306438454_A_qualitative_study_of_major_programming_languages_teaching_programming_languages_to_computer_science_students/links/58ac70dba6fdccac9008b3c0/A-qualitative-study-of-major-programming-languages-teaching-programming-languages-to-computer-science-students.pdf
https://www.geeksforgeeks.org/peephole-optimization-in-compiler-design/
https://www.geeksforgeeks.org/peephole-optimization-in-compiler-design/
https://doi.org/10.1145/512760.512785
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+New+Method+for+Compiler+Code+Generation&btnG=
https://dl.acm.org/doi/abs/10.1145/512760.512785
https://en.wikipedia.org/wiki/Code_generation_%28compiler%29#cite_note-MuchnickAssociates-1

Johnson Oluwatobi Akanbi et al. / IJRES, 9(3), 1-6, 2022

6

[12] Saumya K. Debray et al., “Compiler Techniques for Code Compaction,” ACM Transactions on Programming Languages and

Systems, vol. 22, no. 2, pp. 378-415, 2000. [CrossRef] [Google Scholar] [Publisher Link]

[13] Alfred V. Aho, Mahadevan Ganapathi, and Steven W.K. Tjiang, “Code Generation Using Tree Matching and Dynamic Programming,”

ACM Transactions on Programming Languages and Systems, vol. 11, no. 4, pp. 491-516, 1989. [CrossRef] [Google Scholar] [Publisher

Link]

[14] A.V. Aho, and S.C. Johnson, “Optimal Code Generation for Expression Trees,” Journal of the ACM, vol. 23, no. 3, pp. 488-501, 1976.

[CrossRef] [Google Scholar] [Publisher Link]

[15] A. Balachandran, D.M. Dhamdhere, and S. Biswas, “Efficient Retargetable Code Generation Using Bottom-Up Tree Pattern Matching,”

Journal of Computer Languages, vol. 15, no. 3, pp. 127-140, 1990. [CrossRef] [Google Scholar] [Publisher Link]

[16] H. Emmelmann, F.W. Schroer, and R. Landwehr, “BEG — A Generator for Efficient Back Ends,” ACM SIGPLAN Notices, vol. 24, no.

7, pp. 227-237, 1989. [CrossRef] [Google Scholar] [Publisher Link]

[17] Christopher W. Fraser, “A Language for Writing Code Generators,” ACM SIGPLAN Notices, vol. 24, no. 7, pp. 238-245, 1989. [Google

Scholar] [Publisher Link]

[18] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting, “BURG—Fast Optimal Instruction Selection and Tree Parsing,” ACM

SIGPLAN Notices, vol. 27, no. 4, pp. 68-76, 1992. [Google Scholar] [Publisher Link]

[19] Deepak Singh, and Mohan Rao Mamdikar, “Identify a Person from Iris Pattern using GLCM features and Machine Learning

Techniques,” SSRG International Journal of Computer Science and Engineering, vol. 7, no. 9, pp. 25-29, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[20] Christoph M. Hoffman, and Michael J. O’Donnell, “Pattern Matching in Trees,” Journal of the Association for Computing Machinary,

vol. 29, no. 1, pp. 68-95, 1982. [Google Scholar] [Publisher Link]

[21] David R. Chase, “An Improvement to Bottom-up Tree Pattern Matching,” Conference Record of the ACM Symposium on Principles of

Programming Languages, pp. 168-177, 1987. [Google Scholar] [Publisher Link]

https://doi.org/10.1145/349214.349233
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Compiler+Techniques+for+Code+Compaction&btnG=
https://dl.acm.org/doi/abs/10.1145/349214.349233
https://doi.org/10.1145/69558.75700
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Code+Generation+Using+Tree+Matching+and+Dynamic+Programming&btnG=
https://dl.acm.org/doi/abs/10.1145/69558.75700
https://dl.acm.org/doi/abs/10.1145/69558.75700
https://doi.org/10.1145/321958.321970
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+Code+Generation+for+Expression+Trees&btnG=
https://dl.acm.org/doi/abs/10.1145/321958.321970
https://doi.org/10.1016/0096-0551(90)90006-B
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Retargetable+Code+Generation+Using+Bottom-Up+Tree+Pattern+Matching&btnG=
https://www.sciencedirect.com/science/article/abs/pii/009605519090006B
https://doi.org/10.1145/74818.74838
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=BEG+%E2%80%94+A+Generator+for+Efficient+Back+Ends&btnG=
https://dl.acm.org/doi/abs/10.1145/74818.74838
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Language+for+Writing+Code+Generators&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Language+for+Writing+Code+Generators&btnG=
https://dl.acm.org/doi/pdf/10.1145/74818.74839
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=BURG%E2%80%94Fast+Optimal+Instruction+Selection+and+Tree+Parsing&btnG=
https://dl.acm.org/doi/pdf/10.1145/131080.131089
https://doi.org/10.14445/23488387/IJCSE-V7I9P105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identify+a+Person+from+Iris+Pattern+using+GLCM+features+and+Machine+Learning+Techniques&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identify+a+Person+from+Iris+Pattern+using+GLCM+features+and+Machine+Learning+Techniques&btnG=
http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=425
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pattern+Matching+in+Trees&btnG=
https://dl.acm.org/doi/pdf/10.1145/322290.322295
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Improvement+to+Bottom-up+Tree+Pattern+Matching&btnG=
https://dl.acm.org/doi/pdf/10.1145/41625.41640

