
SSRG International Journal of Recent Engineering Science Volume 8 Issue 1, 6-10, Jan-Feb 2021

ISSN: 2349–7157 / https://doi.org/10.14445/23497157/IJRES-V8I1P102 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A New Column-Row Method for Traveling

Salesman Problem: The Dhouib-Matrix-TSP1

Souhail Dhouib

Higher Institute of Industrial Management, Sfax University.

Received: 05 January 2021 Revised: 07 February 2021 Accepted: 16 February 2021 Published: 26 February 2021

Abstract - In this paper, a new column-row method named Dhouib-Matrix-TSP1 is designed to solve the Traveling Salesman

Problem (TSP) in polynomial time. At first, the distance matrix is defined, and then four steps are launched: 1) Selecting the

starting position, 2) Choosing Rows, 3) Discarding by column 3) Transforming the route to a tour.

Some numerical examples are presented to illustrate the effectiveness of the proposed method. It can be concluded that the

Dhouib-Matrix-TSP1 method consumes a small number of iterations (just n iterations, where n represents the number of

cities) to solve the TSP, and its result is the closest to the optimum solution.

Keywords - Traveling Salesman Problem, Combinatorial opptimization, Polynomial time.

1. Introduction
The Traveling Salesman Problem (TSP) is a

fundamental combinatorial optimization model studied in the

decision-making theory. It deals with finding the shortest

tour that visits each city in a given list exactly once and then

returns to the starting city. The TSP is formulated

mathematically as flows:

Optimize ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 (1)

Subject to

∑ 𝑥𝑖𝑗 = 1

𝑛

𝑗=1

, 𝑖 = 1, . . . , 𝑛

∑ 𝑥𝑖𝑗 = 1

𝑛

𝑖=1

, 𝑗 = 1, . . . , 𝑛

𝑥𝑖𝑗 = 0 𝑜𝑟 1, 𝑖 = 1, . . . , 𝑛 , j = 1, . . . , 𝑛. (2)

Where dij is the distance (the cost or the time) from city i

to city j and xij is used to be the binary value (if the route

from i to j is chosen, then xij =1; otherwise, xij =0). Eq1.

Represents the function that minimizes the distance between

the cities, whereas Eq2. Deals with the restriction of no city

are visited twice.

In recent years, many papers have dealt with TSP. [1]

provides a comprehensive review of existing applications,

approaches, and taxonomy on multiple TSP. [2] presents a

new kind of problem by combining the scheduling problem

with the TSP, where a traveler moves through n locations

(nodes), visits all the locations and each location exactly

once to assign and initiate one of the n jobs, and then returns

to the first location. [3] explores the Energy Minimization

Traveling Salesman Problem (EMTSP), where the sum of the

product of load (including curb weight of the vehicle) and

traveled distances are minimized. [4] deals with maximizing

the profit per unit of time: the profit is calculated by

subtracting the route costs from the profit divided by the total

time required to complete the tour. [5] explores the TSP with

release dates and drone resupply; this paper consists of

finding a minimum route time for a single truck that can

receive newly available orders on route via a drone sent from

the depot. [6] designs and codes a multi-thread-based fast

algorithm with Delphi language for the medium and large-

scale TSP instances from TSPLIB. [7] presents a

comparative study of the alternative mathematical

formulations for TSP with hotel selection. [8] develops a

Variable Neighborhood Search-based heuristic solution

method to solve the Hybrid Electric Vehicle TSP with time

windows. [9] generates the exact Pareto set in Multi-

Objective Traveling Salesman and Set Covering Problems.

[10] proposes a new decomposition-based technique and

probabilistic model-based methods to tackle a newly

designed multi-objective TSP test suite. [11] applies the

honey bees mating optimization metaheuristic for the

Euclidean TSP.

This paper attempts to propose an original column and

row generation method, named the Dhouib-Matrix-TSP1

method, to optimize the TSP in polynomial time (exactly in n

iterations). The next section describes the proposed method,

where section three gives a detailed example, computational

http://www.internationaljournalssrg.org/

Souhail Dhouib / IJRES, 8(1), 6-10, 2021

7

results will be presented in section four, and finally, a

conclusion will be given.

2. The Proposed Method: Dhouib-Matrix-TSP1
The Dhouib-Matrix-TSP1 method follows a very simple

procedure composed of four steps :

Step 1: At first, find the minimal element of each row in the

distance matrix and write it (ai) on the right-hand side of the

matrix. Then, select the smallest element in the list of ai and

determine its position in the matrix (a numerical example

will be given in section 3). The position of the smallest

element will specify two cities, x, and y, which will be

inserted in the proposed route named list-cities {x,y}. To

finish this step, discard the columns of the inserted cities (x

and y).

Step 2: Select the left element in the proposed route, which

is (x), and the right one, which is (y). Next, find the smallest

element for each row: for the row of x and the row of y.

Then, select the minimum distance; let it be the city z.

Step 3: Now, insert the last selected city z in the proposed

list-cities at right if it was selected by y {x-y-z} or left if it

was selected by x {z-x-y}. After that, discard the column of z

and test: if all cities are in the list, so go to Step 4. Else

return to Step 2.

Step 4: Transform the proposed route list-cities into a tour

by starting and ending with the same city. Accordingly, the

starting city must be in the first position on the proposed

route. Nevertheless, change the position of the first element

to the end (one by one; a detailed example will be given in

section 3) until the starting city is at the first position.

Finally, add the starting city to the end of the proposed

route, and it will be a tour.

3. The Proposed Method: Dhouib-Matrix-TSP1
This section presents an example that may be useful to

explain the four steps of the proposed method: Dhouib-

Matrix-TSP1.

Let’s consider the distances matrix from [12] in time

between eight cities (Beverly, Salem, Weymouth, Braintree,

Smithfield, Danvers, Woburn, and Springfield). We are

looking to design a tour for a salesman to minimise the total

distance.

Step 1: At first, find the minimal element of each row in

the distance matrix and write it (ai) on the right-hand side of

the matrix as follows:

Then, select the smallest element in the list of ai; in this

example, it is 7. Next, determine the position of the smallest

element (7) in the corresponding row, which is (d34), and

insert these cities in the proposed route named list-cities {3-

4}. In reality, the distance (d34) represents the minimum

distance between all cities in the matrix. Instead of

eliminating the visit of these cities in the next iterations, we

discard their columns from the matrix: column 3 and column

4.

Step 2: Select the left element in the proposed route list-

cities, which is (3) and the right one which is (4). Then, find

the minimum element for each row: for row 3, it is (35), and

for row 4, it is (39). After that, select the smallest distance,

which is 35, between cities 3 and 2.

Step 3: Now, insert the last select city, which is 2, in the

proposed route list-cities {2-3-4} and discard its column,

then return to Step 2.

From / To Bev. Sal. Wey. Bra. Smi. Dan. Wob. Spr.

Beverly 0 13 45 50 95 15 32 140

Salem 15 0 40 44 85 22 43 122

Weymouth 42 35 0 7 42 55 40 145

Braintree 48 39 10 0 47 58 45 155

Smithfield 105 90 35 42 0 98 100 202

Danvers 12 24 52 55 102 0 35 148

Woburn 35 42 32 42 102 33 0 112

Springfield 135 125 142 150 212 150 110 0

Souhail Dhouib / IJRES, 8(1), 6-10, 2021

8

Step 2: Select the left element in the proposed route list-

cities, which is (2) and the right one which is (4). Then, find

the minimal element for each row: for row 2, it is (15), and

for row 4, it is (45). Then, select the smallest distance, which

is 15, between City 2 and City 1.

Step 3: Insert the last selected city, which is 1 in the

proposed route list-cities {1-2-3-4} and discard its column,

then return to Step 2.

Step 2: Select the left element in the proposed route list-

cities, which is (1) and the right one which is (4). Then, find

the minimal element for each row: for row 1, it is (15), and

for row 4, it is (45). After that, select the smallest distance,

which is 15, between City 1 and City 6.

Step 3: Insert the last selected city, which is 6, in the

proposed route list-cities {6-1-2-3-4} and discard its column,

then return to Step 2.

Step 2: Select the left element in the route list-cities, which

is (6) and the right one which is (4). Then, find the minimum

element for each row: for row 6, it is (35), and for row 4, it is

(45). After that, select the smallest distance, which is 35,

between City 7 and City 6.

Step 3: Insert the last selected city, which is 7 in the

proposed route list-cities {7-6-1-2-3-4} and discard its

column, then return to Step 2.

Step 2: Select the left element in the proposed route list-

cities, which is (7) and the right one which is (4). Then find

the minimal element for each row: for row 7, it is (102), and

for row 4, it is (47). Then, select the smallest distance, which

is 47, between City 5 and City 4.

Step 3: Insert the last select city, which is 5 in the proposed

list-cities {7-6-1-2-3-4-5} and discard its column, then return

to Step 2.

Step 2: Select the left element in the proposed route list-

cities, which is (7), and the right one, which is (5). Then, find

the minimal element for each row: for row 7, it is (112), and

for row 5, it is (202). Then, select the smallest distance,

which is 112, between City 8 and City 7.

Step 3: Insert the last selected city, 8, in the proposed route

list-cities {8-7-6-1-2-3-4-5} and discard its column. All cities

are on the list, so go to step 4.

Step 4: Transfer the proposed route list-cities {8-7-6-1-2-

3-4-5} to a tour by starting and ending with the same city

(1). Accordingly, change the position of the first element to

the end of the list until city number 1 is at position 1. For

Souhail Dhouib / IJRES, 8(1), 6-10, 2021

9

example, change the position of city 8 to the last position

after city 5, transfer city 7 after city 8, and so on. Then, we

obtain the {1-2-3-4-5-8-7-6}. Finally, add city 1 to the end

of the route {1-2-3-4-5-8-7-6-1} and compute the total

distance, which will be equal to 464. Our method Dhouib-

Matrix-TSP1 is better (19 units in less) than the Hungarian

method (which is 483).

4. The Computational Results
The Python language is used to implement the

proposed Dhouib-Matrix-TSP1 method, and some examples

will be used to prove its efficiency in finding the optimal or

the near-optimal solution in polynomial time (only n

iterations, where n is the number of cities).

Fig. 1 Solving the instances of [14] by Dhouib-Matrix-TSP1

[14] designs a method named One's Assignment method

to solve the TSP. Fig 2. shows that our method Dhouib-

Matrix-TSP1 finds the optimal solution in exactly 5

iterations.

Fig. 2 Solving the instances of [15] by Dhouib-Matrix-TSP1

[15] applies the Hungarian method to find a tour for 8

cities with a distance of 34, whereas our method finds a

better solution {1-2-3-7-8-6-4-5-1} with a distance of 26

(improvement of 24%).

5. Conclusion
In this paper, a new column-row method named Dhouib-

Matrix-TSP1 and composed of four steps is designed. Then,

several numerical examples are depicted, each example is

simulated using the Python language, and the solution is

compared to the optimum.

It can be concluded that the proposed Dhouib-Matrix-

TSP1 method uses a simple technique and generates an

optimal or a near-optimal solution in polynomial time (on

only n iterations). An extension to this work is to apply our

method to other combinatory optimization problems.

Souhail Dhouib / IJRES, 8(1), 6-10, 2021

10

References
[1] Omar Cheikhrouhoua, and Ines Khoufi, “A Comprehensive Survey on the Multiple Traveling Salesman Problem: Applications,

Approaches, and Taxonomy,” Computer Science Review, vol. 40, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Mohsen Mosayebi, Manbir Sodhi, and Thomas A. Wettergren, “The Traveling Salesman Problem with Job-times (TSPJ),” Computers &

Operations Research, vol. 129, 2021.[CrossRef] [Google Scholar] [Publisher Link]

[3] Shijin Wang, Ming Liu, and Feng Chu, “Approximate and Exact Algorithms for an Energy Minimization Traveling Salesman Problem,”

Journal of Cleaner Production, vol. 249, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[4] Moshe Kaspi, Moshe Zofi, and Ron Teller, “Maximizing the Profit Per Unit Time for the Traveling Salesman Problem,” Computers &

Industrial Engineering, vol. 135, pp. 702-710, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[5] Juan C. Pina-Pardo, Daniel F. Silva, and Alice E. Smith, “The Traveling Salesman Problem with Release Dates and Drone Resupply,”

Computers & Operations Research, vol. 129, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Xin Wei et al., “Multi-core-, Multi-Thread-Based Optimization Algorithm for Large-Scale Traveling Salesman Problem,” Alexandria

Engineering Journal, vol. 60, no. 1, pp. 189-197, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] Cemal Aykut Gencel, and Barış Keçeci, “Traveling Salesman Problem with Hotel Selection: Comparative Study of the Alternative

Mathematical Formulations,” Procedia Manufacturing, vol. 39, pp. 1699-1708, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[8] Christian Doppstadt, Achim Koberstein, and Daniele Vigo, “The Hybrid Electric Vehicle—Traveling Salesman Problem with time

windows,” European Journal of Operational Research, vol. 284, no. 2, pp. 675-692, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[9] Kostas Florios, and George Mavrotas, “Generation of the Exact Pareto set in Multi-Objective Traveling Salesman and Set Covering

Problems,” Applied Mathematics and Computation, vol. 237, pp. 1-19, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[10] Aimin Zhou, Feng Gao, and Guixu Zhang, “A Decomposition-Based Estimation of Distribution Algorithm for Multi-Objective Traveling

Salesman Problems,” Computers & Mathematics with Applications, vol. 66, no. 10, pp. 1857-1868, 2013. [CrossRef] [Google Scholar]

[Publisher Link]

[11] Yannis Marinakis, Magdalene Marinaki, and Georgios Dounias, “Honey Bees Were Mating Optimization Algorithm for the Euclidean

Traveling Salesman Problem,” Information Sciences, vol. 181, no. 20, pp. 4684-4698, 2011. [CrossRef] [Google Scholar] [Publisher

Link]

[12] Briana Couto, “Using Matrices And Hungarian Method To Solve The Traveling Salesman Problem,” Mathematics Honors Theses, Ph.D.

at Digital Commons at Salem State University, 2018. [Google Scholar] [Publisher Link]

[13] Sevgi Erdoğan, and Elise Miller-Hooks, “A Green Vehicle Routing Problem,” Transportation Research Part E: Logistics and

Transportation Review, vol. 48, no. 1, pp. 100-114, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[14] Hadi Basirzadeh, “One's Assignment Method for Solving Traveling Salesman Problem,” Journal of Mathematics and Computer Science,

vol. 10, pp. 258-265, 2014. [Google Scholar] [Publisher Link]

[15] Janusz Czopik, “An Application of the Hungarian Algorithm to Solve Traveling Salesman Problem,” American Journal of Computational

Mathematics, vol. 9, pp. 61-67, 2019. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.cosrev.2021.100369
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+survey+on+the+Multiple+Traveling+Salesman+Problem%3A+Applications%2C+approaches%2C+and+taxonomy%2C+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574013721000095
https://doi.org/10.1016/j.cor.2021.105226
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Traveling+Salesman+Problem+with+Job-times+%28TSPJ%29%2C+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0305054821000186
https://doi.org/10.1016/j.jclepro.2019.119433
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximate+and+exact+algorithms+for+an+energy+minimization+traveling+salesman+problem%2C+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0959652619343033
https://doi.org/10.1016/j.cie.2019.06.050
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Maximizing+the+profit+per+unit+time+for+the+traveling+salesman+problem&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0360835219303808
https://doi.org/10.1016/j.cor.2020.105170
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+traveling+salesman+problem+with+release+dates+and+drone+resupply%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0305054820302872
https://doi.org/10.1016/j.aej.2020.06.055
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-core-%2C+multi-thread-based+optimization+algorithm+for+large-scale+traveling+salesman+problem%2C&btnG=
https://www.sciencedirect.com/science/article/pii/S1110016820303227
https://doi.org/10.1016/j.promfg.2020.01.270
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Traveling+Salesman+Problem+with+Hotel+Selection%3A+Comparative+Study+of+the+Alternative+Mathematical+Formulations%22%2C&btnG=
https://www.sciencedirect.com/science/article/pii/S2351978920303346
https://doi.org/10.1016/j.ejor.2019.12.031
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Hybrid+Electric+Vehicle%E2%80%94Traveling+Salesman+Problem+with+time+windows%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0377221719310719
https://doi.org/10.1016/j.amc.2014.03.110
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Generation+of+the+exact+Pareto+set+in+Multi-Objective+Traveling+Salesman+and+Set+Covering+Problems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0096300314004810
https://doi.org/10.1016/j.camwa.2013.05.031
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+decomposition-based+estimation+of+distribution+algorithm+for+multi-objective+traveling+salesman+problems%2C&btnG=
https://www.sciencedirect.com/science/article/pii/S089812211300463X
https://doi.org/10.1016/j.ins.2010.06.032
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Honey+bees+were+mating+optimization+algorithm+for+the+Euclidean+traveling+salesman+problem%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0020025510002938
https://www.sciencedirect.com/science/article/abs/pii/S0020025510002938
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+Matrices+And+Hungarian+Method+To+Solve+The+Traveling+Salesman+Problem&btnG=
https://digitalrepository.salemstate.edu/handle/20.500.13013/644
https://doi.org/10.1016/j.tre.2011.08.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Green+Vehicle+Routing+Problem%2C++Transportation+Research+Part+E%3A+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1366554511001062
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=One%27s+Assignment+Method+for+Solving+Traveling+Salesman+Problem&btnG=
https://d1wqtxts1xzle7.cloudfront.net/87367502/download-ones-assignment-method-for-solving-traveling-salesman-problem-libre.pdf?1654990495=&response-content-disposition=inline%3B+filename%3DOnes_Assignment_Method_For_Solving_Trave.pdf&Expires=1686128071&Signature=TY4l85fCp452dzB4KV3xm0b5s-xH8NvOLiGaPMkVWGH5tnMXxWahpgd3eh~znPd8uJ5ylVxSzKhBfNuG-eRnha7DGngYVvMDgqbEK55nxP8eCmIh~UJxn~gX3n2Mf~KtYlk1RCABEiTxCnajysF5FavAoUhZuWS9sF-SmDbCIonShRogREfvcNCF92R~DOzmQvx-AyRilsEEzEfnYY117~ba0quvOUgSiw6dyjS3eRT2sX4VDdNygous7EFexuRP~l9MRJZzl8-pGfFOuthw8chSwwCos06WL3qTOiFsCQhw7HrFYtSC1eQYC0SUNMFjrXPftD8cWTa7AWvaGy3WFA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.4236/ajcm.2019.92005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Application+of+the+Hungarian+Algorithm+to+Solve+Traveling+Salesman+Problem%2C+&btnG=
https://www.scirp.org/html/92952.html

