International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, Volume 2 Issue 6 November to December 2015

A Non-monotone Trust-Region-Based
Approach for Symmetric Nonlinear Systems

Baowei Liu
College of Mathematics and Statistics, Cangzhou Normal University, China

Abstract:

This paper puts forward a new trust-region
process for solving symmetric systems of equations
having several variables. The proposed approach
the efficiency and robustness of the trust-region
The global the
quadratic convergence of the proposed approach are
established.
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I. INTRODUCTION

Let F: R"—>R" be a continuously

differentiable image in the following form
F (X) = (F]_(X)! F2 (X); ceey Fn (X))T ) and then

consider the following symmetric nonlinear systems
of equations:

F(x)=0, xI R" 1)

This class of problems is incessantly close
to both constrained and unconstrained optimization
problems. It is also worth noting that a feasible
approach to Equation (1) consists in reformulating it
as a nonlinear unconstrained least-squares problem:

. 1
min (x) = Z[F ([ @
where |||| denote the Euclidean norm. Nonlinear

least-squares problems have been comprehensively
studied by more and more authors such that various
iterative procedures have been proposed to solve this
problem, for example [1-4].

The trust region framework for solving
systems of nonlinear equations (1) is such a popular
of iterative procedure. In each iterate, it can generate
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makes use of the combination of both an efficient
adaptive trust-region radius and a non-monotone
method, and this strategy can improve

a trial step dk by computing an approximate

solution of the following sub-problem:

min m, (X, +d,)

1
= E”Fk + Jkdk”Z

1 ®)
=f +d J|F, +§d;J;Jkdk,

st.d, eR" and |d,[<A,,
where X, =X, +d,, f,=f(x), F=F(X),
J,=F(x) is the Jacobian of F(X), and

A, >0 is the trust-region radius.
It is clear that the calculation of the exact
Jacobian J, at each iterate is a common drawback

of sub-problem (3) that straightway increases the
entire computational cost of solving a problem.
BFGS and Broyden family updated formulas instead

of the exact Jacobian matrix J, in Equation (3), the
sub-problem can be rewritten as
minm, (X, +d,)
= fk+dkTBka+%dkTBkBkdk (4)
st.d, eR" and |d,||<A,

The B, is satisfied with the following in-equation

(5]
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where c€(0,1), M isaconstantand P, is the

B (5)

and

A, =cM min{

|

smallest non-negative integer [P ensuring that the
trust-region ratio is greater than a real-valued

parameter 1z € (0,1).

Recently, non-monotone techniques are
generally used in the trust region methods. In 1982,
the first non-monotone technique that is the so-called
watchdog technique was proposed by Chamberlain et
al. [6] for constrained optimization to overcome the
Maratos effect. Motivated by this idea, Grippo et al.
first

technique for Newton’s method in [7]. In 1993, Deng

introduced a non-monotone line search

et al. [8] proposed a non-monotone trust region
algorithm in which they combined non-monotone
term and trust region method for the first time. Due
to the high efficiency of non-monotone techniques,
many authors are interested in working on the
non-monotone techniques for solving optimization
problems [9]. Especially, nowadays some researchers
are focused on utilizing non-monotone techniques in
adaptive trust region method and good numerical
results have been achieved [10].

The general non-monotone form is as follows:
f (X)) = max f(x_;)

0< j<m,

m(0) = 0,

0£ m(k)£ min{M, m(k- )+ 1} and

M 3 0 isan integer constant.

Actually, the most common
non-monotone ratio is defined as follows:
I(k) f (Xk +d )

“ m(0)- m(d,)
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However, although the non-monotone technique has
many advantages, Zhang et al. [11] found that it still
has some drawbacks and they proposed a new
non-monotone

C,—f(x +s,)

_ (7
P m, (%) —m, (X +5,)
f(x), k=0
Co= 1m0 5y ©
Q T
here Q {1 -
where
< Qe+l k=1
Mo €[01) M €[l d]  and

Tes €[ Mmin+ TToax |, @re two given constants.

The rest of this paper is organized as follows.
In Section 2, we introduce the new non-monotone
trust-region-based approach. In Section 3, we analyze
the new method and prove the global convergence.
Some conclusions are given in Section 4.

Il. ALGORITHM 1: A FRESH
NON-MONOTONE
TRUST-REGION-BASED ALGORITHM

Step 0: An initial point XOER”, a symmetric

positive definite matrix B, e R™, k c ,

max !

M>0, N>0 and £>0. the

ne (01,

original value |F||=24,, R, =%||FO||2,

p=0, f,=0, k=0 then compute B,F, and

IFe|= &, k<K fi <. (Startof outer loop).

max !

Step 1. Specify the trial point dk by solving

sub-problem (5); X, =X, +d,.

~

k+1 ! and

. P AT
Step 2 F(Xk+1) = I:k+1’ EH I:k+l

calculate Ared =C, — f

k+1?
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Pred =m(x,)—mM(X,,,) , and determine the

Ared
Pred

trust-region ratio fk by using fk =
Iff, <g, p=p+1 and update the trust-region

radius A, with (6); else X, =X, . (End of
inner loop)

Step3: P <—0;and determine A, using (6).
Step 4: Update B,, by (5), and define the
m(k+1)=min{m(k)+L N}; while calculate
the C,,, andgenerate 77,,, by (8).

Step5: Set F,, =F,, k=k+1, gotostep1.

In order to testifying the convergence
analysis of the proposed algorithm, the following
assumptions are required:

(Al) Let the level set

L(%,) ={xeR"[f(x)< ()} be bounded for

any given X, € R" and F(X) be continuously

differentiable on the compact convex set €

containing the level set L(X,) .

(A2) Assume that the following condition holds:

|0.~BI R =0(d,]) ©
(A3) The matrix {B, } is uniformly bounded above;

that is to say, there exists a constant M, >0 such
that

[B <M, (10)
forall ke N U{O}.

Moreover, we assume that M || | <|B,F|. for

36

aconstant M, >0,k e N U{O}.

2

(A4) The abatement of the model m, is at least as

much as a fraction of that obtained by the Cauchy
point;

pe (0,1) such that

in other words, there exists a constant

M, (X)) —m, (x, +d})

B.F|l

A

k

(11)

> 3B, Fy [ min Ak,”

forall ke NU{0}.
From (A3), it is distinct that the matrix
B,B, is uniformly bounded above as well.

Meanwhile, condition (11) can be easily achieved by
approximately solving the trust-region sub-problem
(4), on account of some effective procedures [12, 13].
The detailed results can be generalized in the
subsequence lemma.

Il. GLOBAL CONVERGENCE
Lemma 3.1. [14] Suppose that dk is a solution of

sub-problem (4) such that

M (%) = M (% + ) )
2 mk(xk)_mk(xk +dkcp)

where dkcp is the Cauchy point. Then, condition

(112) holds.
Lemma 3.2. [15] Suppose that (A2) and (A3) hold,

the sequence {Xk} is generated by Algorithm 1 and

dk is a solution of sub-problem (4). Then, we have
o 2

| f (Xk + dk) —m, (Xk + dk)| < O(”dk ” ) (13)

Lemma 3.3. Suppose that the sequence {Xk} is

generated by Algorithm 1. Then the inequality
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f(X.1) <Cps <Cy
VK holds, where C, is defined in (8).
Proof: We prove C, < f(X,) by induction.
Obviously, when j=0, we have C,= f(X,).
that holds

Assume when

C, < (%)

j=1...,k=1. When j=Kk, from (8), that we

have

_ aQia Gy + Fx,)

) Q

< MeaQua F (%) + F(%p)
Q

C

(14)

= (%)

then we obtain that f(X,,,) <C,,, <C, < f(X,).

We complete the proof.
Lemma 3.4. Suppose that (A2), (A3) and (A4) hold

and the sequence {Xk} is generated by Algorithm 1.

Then, the inner cycle of Algorithm 1 is well defined.
Proof: Assume that the inner cycle of Algorithm 1

cycles infinity; that is, A} >0 as p—oo.

Using the fact that X, is not the optimum of
Equation (2), it can be concluded that there exists a
constant & >0 such that || F || 2 &, . These facts,

(A3) and (11) suggest that
M, (x)—m, (x, +d.)

B.F. ||}
‘ (15)

> B|B.F, ||m|n{ o |
M,&
|\/|12

is a solution of sub-problem (4)

@0>

> ﬁMogmin[Ap
> BM eA],

Where d/
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corresponding to P in the k-th iterate. Now the
Lemma 3.2, In-equation (15) and lead to

fk_ f(xk+dkp)
m, (x.)—m, (x, +d})
S‘f(xk+dk”)—rﬁk(xk+dk”)|
M, (x )—rh (x, +d°)

o) _oqap
ﬂMOgA ,BMogAp

as P —oo. Therefore, there exists a sufficiently

large P, which s called [, , such that

fk B f(xk +dkpk)
mk(xk)_mk(xk +dkpk) -

Besides, from the definition of C, , and from

Lemma 3.3, we have that C, > f, . Therefore, this
fact along with the previous inequality immediately
implies that f > g, which means that p, is a

finite integer number, so the inner cycle of Algorithm
1 is well defined.
Lemma 3.5. [15] Suppose that (A3) and (A4) hold,

the sequence {Xk} is generated by Algorithm 1 and
dk is a solution of sub-problem (4). Then, we have

m, (x) -, (% +d) =L [R]" @8

Mg

M2
Theorem 3.6. Suppose that (Al)-(A4) hold. Then,
Algorithm 1 either stops at a stationary point of

where L, =ﬂmin{cpkmin{M%,M},

f(X) or generates an infinite sequence {X,}

such that
lim|F[|=0

k—o0

(A7)

Proof: By contradiction, for all sufficiently large K,
assume that there exist a constant £ >0 and an

infinite subset K < N U{O} satisfying
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IR > ¢ (18)

forall ke K.
Using in-equation (14) and fk > u, it can be written
that
Ck —f (Xk + dk)
2 Iu[rﬁk(xk)_rﬁk(xk +dk)]
2
L [R]
> ue’L, .

Now, by taking a limit from both sides of this

inequality, as K-—>oo , we have that

lim L =0; that is p, > for sufficiently

large k € K. But this is possible only if p, —> 0,

as K—ooand ke K. This clearly results in a
contradiction with Lemma3.3. Therefore, hypothesis
(18) is not true, and the result of the theorem is
given.
IV. CONCLUSIONS

This paper is involved with the introduction
and analysis of a trust-region-based algorithm for
solving systems of equation by developing an
effective adaptive trust-region radius and a credible
non-monotone strategy. Practical utilization of the
that the
application of adaptive techniques can decline the

trust-region framework has indicated
number of sub-problem’s count, and the employment
of non-monotone strategy increases the efficiency
and robustness of the algorithm. As a result, the two
methods are combined in a trust-region framework to
construct a more promising algorithm for solving
symmetric non-linear systems.
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