A Non-monotone Trust-Region-Based Approach for Symmetric Nonlinear Systems

Baowei Liu

College of Mathematics and Statistics, Cangzhou Normal University, China

Abstract:

This paper puts forward a new trust-region process for solving symmetric systems of equations having several variables. The proposed approach the efficiency and robustness of the trust-region framework. The global convergence and the quadratic convergence of the proposed approach are established.

Keywords- *adaptive radius, non-monotone technique, nonlinear equations, trust-region method*

I. INTRODUCTION

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a continuously

differentiable image in the following form

 $F(x) = (F_1(x), F_2(x), \dots, F_n(x))^T$, and then

consider the following symmetric nonlinear systems of equations:

$$F(x) = 0, \quad x \hat{1} \quad R^n \tag{1}$$

This class of problems is incessantly close to both constrained and unconstrained optimization problems. It is also worth noting that a feasible approach to Equation (1) consists in reformulating it as a nonlinear unconstrained least-squares problem:

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} \|F(x)\|^2$$
(2)

where $\|\cdot\|$ denote the Euclidean norm. Nonlinear least-squares problems have been comprehensively studied by more and more authors such that various iterative procedures have been proposed to solve this problem, for example [1-4].

The trust region framework for solving systems of nonlinear equations (1) is such a popular of iterative procedure. In each iterate, it can generate makes use of the combination of both an efficient adaptive trust-region radius and a non-monotone method, and this strategy can improve

a trial step d_k by computing an approximate solution of the following sub-problem:

$$\min m_k (x_k + d_k)$$

$$= \frac{1}{2} \|F_k + J_k d_k\|^2$$

$$= f_k + d_k^T J_k^T F_k + \frac{1}{2} d_k^T J_k^T J_k d_k,$$
(3)
$$s.t. d_k \in \mathbb{R}^n \text{ and } \|d_k\| \leq \Delta_k,$$

where $x_{k+1} = x_k + d_k$, $f_k = f(x_k)$, $F = F(x_k)$, $J_k = F'(x_k)$ is the Jacobian of F(x), and

 $\Delta_k > 0$ is the trust-region radius.

It is clear that the calculation of the exact Jacobian J_k at each iterate is a common drawback of sub-problem (3) that straightway increases the entire computational cost of solving a problem. BFGS and Broyden family updated formulas instead of the exact Jacobian matrix J_k in Equation (3), the sub-problem can be rewritten as

$$\min \hat{m}_{k}(x_{k} + d_{k})$$

$$= f_{k} + d_{k}^{T}B_{k}F_{k} + \frac{1}{2}d_{k}^{T}B_{k}B_{k}d_{k} \qquad (4)$$
s.t. $d_{k} \in \mathbb{R}^{n}$ and $\|d_{k}\| \leq \Delta_{k}$

The B_k is satisfied with the following in-equation

$$\left\| \boldsymbol{B}_{k}^{-1} \right\| \geq \frac{\left\| \boldsymbol{d}_{k-1} \right\|}{\left\| \boldsymbol{F}_{k} - \boldsymbol{F}_{k-1} \right\|} \tag{5}$$

and

$$\Delta_{k} = c^{p_{k}} \min\left\{\frac{\|d_{k-1}\|}{\|F_{k} - F_{k-1}\|}, M\right\} \|F_{k}\| \quad (6)$$

where $c \in (0,1)$, M is a constant and p_k is the smallest non-negative integer p ensuring that the trust-region ratio is greater than a real-valued parameter $\mu \in (0,1)$.

Recently, non-monotone techniques are generally used in the trust region methods. In 1982, the first non-monotone technique that is the so-called watchdog technique was proposed by Chamberlain et al. [6] for constrained optimization to overcome the Maratos effect. Motivated by this idea, Grippo et al. first introduced a non-monotone line search technique for Newton's method in [7]. In 1993, Deng et al. [8] proposed a non-monotone trust region algorithm in which they combined non-monotone term and trust region method for the first time. Due to the high efficiency of non-monotone techniques, many authors are interested in working on the non-monotone techniques for solving optimization problems [9]. Especially, nowadays some researchers are focused on utilizing non-monotone techniques in adaptive trust region method and good numerical results have been achieved [10].

The general non-monotone form is as follows:

$$f(x_{l(k)}) = \max_{0 \le j \le m_k} f(x_{k-j})$$

m(0) = 0,

$$0 \pm m(k) \pm \min\{M, m(k-1)+1\}$$
 and

 M^{3} 0 is an integer constant.

Actually, the most common non-monotone ratio is defined as follows:

$$r_{k} = \frac{f_{l(k)} - f(x_{k} + d_{k})}{m_{k}(0) - m_{k}(d_{k})}$$

However, although the non-monotone technique has many advantages, Zhang et al. [11] found that it still has some drawbacks and they proposed a new non-monotone

$$\rho_{k} = \frac{C_{k} - f(x_{k} + s_{k})}{m_{k}(x_{k}) - m_{k}(x_{k} + s_{k})}$$
(7)
$$C_{k} = \begin{cases} f(x_{k}), & k = 0 \\ \frac{\eta_{k-1}Q_{k-1}C_{k-1} + f(x_{k})}{Q_{k}}, & k \ge 1 \end{cases}$$
(8)

where
$$Q_k = \begin{cases} 1, & k = 0 \\ \eta_{k-1}Q_{k-1} + 1, & k \ge 1 \end{cases}$$

$$\eta_{\min} \in [0,1)$$
 , $\eta_{\max} \in [\eta_{\min},1]$ and

 $\eta_{k-1} \in [\eta_{\min}, \eta_{\max}], \text{ are two given constants.}$

The rest of this paper is organized as follows. In Section 2, we introduce the new non-monotone trust-region-based approach. In Section 3, we analyze the new method and prove the global convergence. Some conclusions are given in Section 4.

II. ALGORITHM 1: A FRESH NON-MONOTONE TRUST-REGION-BASED ALGORITHM

Step 0: An initial point $x_0 \in \mathbb{R}^n$, a symmetric positive definite matrix $B_0 \in \mathbb{R}^{n \times n}$, k_{\max} , c, $\mu \in (0,1)$, M > 0, N > 0 and $\varepsilon > 0$. the original value $||F_0|| = \Delta_0$, $\mathbb{R}_0 = \frac{1}{2} ||F_0||^2$, p = 0, $\hat{r}_0 = 0$, k = 0 then compute $B_0 F_0$ and $||F_k|| \ge \varepsilon$, $k \le k_{\max}$, $\hat{r}_k < \mu$. (Start of outer loop). Step 1: Specify the trial point d_k by solving sub-problem (5); $\hat{x}_{k+1} = x_k + d_k$.

Step 2: $F(\hat{x}_{k+1}) = \hat{F}_{k+1}, \frac{1}{2} \|\hat{F}_{k+1}\|^2 = \hat{f}_{k+1}$; and calculate $Ared = C_k - \hat{f}_{k+1}$,

 $\mathbf{P} \operatorname{red} = \hat{m}(x_k) - \hat{m}(\hat{x}_{k+1})$, and determine the trust-region ratio \hat{r}_k by using $\hat{r}_k = \frac{\operatorname{Ared}}{\operatorname{P} \operatorname{red}}$.

If $\hat{r}_k < \mu$, p = p + 1 and update the trust-region radius Δ_k with (6); else $x_{k+1} = \hat{x}_{k+1}$. (End of inner loop)

Step 3: $p \leftarrow 0$; and determine Δ_k using (6).

Step 4: Update B_{k+1} by (5), and define the $m(k+1) = min\{m(k)+1, N\}$; while calculate the C_{k+1} and generate η_{k+1} by (8).

Step 5: Set $F_{k+1} = \hat{F}_{k+1}$, k = k+1, go to step 1.

In order to testifying the convergence analysis of the proposed algorithm, the following assumptions are required:

(A1) Let the level set $L(x_0) = \{x \in \mathbb{R}^n | f(x) \le f(x_0)\}$ be bounded for any given $x_0 \in \mathbb{R}^n$ and F(x) be continuously differentiable on the compact convex set Ω containing the level set $L(x_0)$.

(A2) Assume that the following condition holds:

$$\left\| \left(\mathbf{J}_{k} - \mathbf{B}_{k} \right)^{T} F_{k} \right\| = \mathcal{O}(\left\| d_{k} \right\|)$$
(9)

(A3) The matrix $\{B_k\}$ is uniformly bounded above; that is to say, there exists a constant $M_1 > 0$ such that

$$\left\|\boldsymbol{B}_{k}\right\| \leq \boldsymbol{M}_{1} \tag{10}$$

for all $k \in N \cup \{0\}$.

Moreover, we assume that $M_0 \left\| F_k \right\| \le \left\| B_k F_k \right\|$, for

a constant $M_0 > 0, k \in N \cup \{0\}$.

(A4) The abatement of the model \hat{m}_k is at least as much as a fraction of that obtained by the Cauchy point; in other words, there exists a constant

 $\beta \in (0,1)$ such that

$$\hat{m}_{k}(x_{k}) - \hat{m}_{k}(x_{k} + d_{k}^{p})$$

$$\geq \beta \left\| B_{k}F_{k} \right\| \min \left[\Delta_{k}, \frac{\left\| B_{k}F_{k} \right\|}{\left\| \hat{B}_{k} \right\|} \right]$$
(11)

for all $k \in N \bigcup \{0\}$.

From (A3), it is distinct that the matrix $B_k B_k$ is uniformly bounded above as well. Meanwhile, condition (11) can be easily achieved by approximately solving the trust-region sub-problem (4), on account of some effective procedures [12, 13]. The detailed results can be generalized in the subsequence lemma.

III. GLOBAL CONVERGENCE

Lemma 3.1. [14] Suppose that d_k is a solution of sub-problem (4) such that

$$\hat{m}_k(x_k) - \hat{m}_k(x_k + d_k)$$

$$\geq \hat{m}_k(x_k) - \hat{m}_k(x_k + d_k^{CP})$$
(12)

where d_k^{CP} is the Cauchy point. Then, condition (11) holds.

Lemma 3.2. [15] Suppose that (A2) and (A3) hold, the sequence $\{x_k\}$ is generated by Algorithm 1 and

 d_k is a solution of sub-problem (4). Then, we have

$$|f(x_k + d_k) - \hat{m}_k(x_k + d_k)| \le O(||d_k||^2)$$
 (13)

Lemma 3.3. Suppose that the sequence $\{x_k\}$ is generated by Algorithm 1. Then the inequality

36 www.ijresonline.com

$$f(x_{k+1}) \le \mathcal{C}_{k+1} \le \mathcal{C}_k$$

 $\forall k$ holds, where C_k is defined in (8).

Proof: We prove $C_k \leq f(x_0)$ by induction. Obviously, when j = 0, we have $C_0 = f(x_0)$. Assume that $C_j \leq f(x_0)$ holds when $j = 1, \dots, k-1$. When j = k, from (8), that we have

$$C_{k} = \frac{\eta_{k-1}Q_{ik-1}C_{k-1} + f(\mathbf{x}_{k})}{Q_{k}}$$
$$\leq \frac{\eta_{k-1}Q_{k-1}f(x_{0}) + f(x_{0})}{Q_{k}}$$
(14)
$$= f(x_{0})$$

then we obtain that $f(x_{k+1}) \le C_{k+1} \le C_k \le f(x_0)$. We complete the proof

We complete the proof.

Lemma 3.4. Suppose that (A2), (A3) and (A4) hold and the sequence $\{x_k\}$ is generated by Algorithm 1. Then, the inner cycle of Algorithm 1 is well defined. Proof: Assume that the inner cycle of Algorithm 1 cycles infinity; that is, $\Delta_k^p \rightarrow 0$ as $p \rightarrow \infty$. Using the fact that x_k is not the optimum of Equation (2), it can be concluded that there exists a constant $\varepsilon > 0$ such that $||F_k|| \ge \varepsilon_0$. These facts, (A3) and (11) suggest that

$$\hat{m}_{k}(x_{k}) - \hat{m}_{k}(x_{k} + d_{k}^{p})$$

$$\geq \beta \|B_{k}F_{k}\|\min\left[\Delta_{k}^{p}, \frac{\|B_{k}F_{k}\|}{\|\hat{B}_{k}\|}\right]$$

$$\geq \beta M_{0}\varepsilon \min\left[\Delta_{k}^{p}, \frac{M_{0}\varepsilon}{M_{1}^{2}}\right]$$

$$\geq \beta M_{0}\varepsilon \Delta_{k}^{p},$$
(15)

Where d_k^p is a solution of sub-problem (4)

corresponding to p in the k-th iterate. Now the Lemma 3.2, In-equation (15) and lead to

$$\begin{aligned} & \left| \frac{f_k - f(x_k + d_k^p)}{\hat{m}_k(x_k) - \hat{m}_k(x_k + d_k^p)} - 1 \right| \\ & \leq \left| \frac{f(x_k + d_k^p) - \hat{m}_k(x_k + d_k^p)}{\hat{m}_k(x_k) - \hat{m}_k(x_k + d_k^p)} \right| \\ & \leq \frac{O(\left\| d_k^p \right\|^2)}{\beta M_0 \varepsilon \Delta_k^p} \leq \frac{O((\Delta_k^p)^2)}{\beta M_0 \varepsilon \Delta_k^p} \to 0, \end{aligned}$$

as $p \to \infty$. Therefore, there exists a sufficiently large p, which is called p_k , such that

$$\frac{f_k - f(x_k + d_k^{p_k})}{\hat{m}_k(x_k) - \hat{m}_k(x_k + d_k^{p_k})} \ge \mu \,.$$

Besides, from the definition of C_k , and from Lemma 3.3, we have that $C_k \ge f_k$. Therefore, this fact along with the previous inequality immediately implies that $\hat{r} \ge \mu$, which means that p_k is a finite integer number, so the inner cycle of Algorithm 1 is well defined. Lemma 3.5. [15] Suppose that (A3) and (A4) hold, the sequence $\{x_k\}$ is generated by Algorithm 1 and

 d_k is a solution of sub-problem (4). Then, we have

$$\hat{m}_{k}(x_{k}) - \hat{m}_{k}(x_{k} + d_{k}) \ge L_{k} \left\| F_{k} \right\|^{2}$$
(16)
where $L_{k} = \beta \min \left\{ c^{p_{k}} \min \left\{ \frac{1}{M_{1}}, \mathbf{M} \right\}, \frac{M_{0}}{M_{1}^{2}} \right\}.$

Theorem 3.6. Suppose that (A1)-(A4) hold. Then, Algorithm 1 either stops at a stationary point of f(x) or generates an infinite sequence $\{x_k\}$ such that

$$\lim_{k \to \infty} \left\| F_k \right\| = 0 \tag{17}$$

Proof: By contradiction, for all sufficiently large k, assume that there exist a constant $\varepsilon > 0$ and an

infinite subset $K \subseteq N \bigcup \{0\}$ satisfying

$$\left\|F_{k}\right\| > \varepsilon \tag{18}$$

for all $k \in K$.

given.

Using in-equation (14) and $\hat{r}_k > \mu$, it can be written that

$$C_{k} - f(x_{k} + d_{k})$$

$$\geq \mu \left[\hat{m}_{k}(x_{k}) - \hat{m}_{k}(x_{k} + d_{k}) \right]$$

$$\geq L_{k} \|F_{k}\|^{2}$$

$$\geq \mu \varepsilon^{2} L_{k}.$$

Now, by taking a limit from both sides of this inequality, as $k \to \infty$, we have that $lim_{k\to\infty}L_k = 0$; that is $p_k \to \infty$ for sufficiently

large $k \in K$. But this is possible only if $p_k \to \infty$, as $k \to \infty$ and $k \in K$. This clearly results in a contradiction with Lemma3.3. Therefore, hypothesis (18) is not true, and the result of the theorem is

IV. CONCLUSIONS

This paper is involved with the introduction and analysis of a trust-region-based algorithm for solving systems of equation by developing an effective adaptive trust-region radius and a credible non-monotone strategy. Practical utilization of the trust-region framework has indicated that the application of adaptive techniques can decline the number of sub-problem's count, and the employment of non-monotone strategy increases the efficiency and robustness of the algorithm. As a result, the two methods are combined in a trust-region framework to construct a more promising algorithm for solving symmetric non-linear systems.

ACKNOWLEDGMENTS

The author would be grateful to the anonymous referees for their valuable comments and suggestions.

REFERENCES

 C. G. Broyden, The convergence of an algorithm for solving sparse nonlinear systems, Math. Comp., 25(114), 1971, 285-294.

- [2] H. Dan, N. Yamashita, and M. Fukushima, Convergerce properties of the inexact Levenberg-Marquardt method under local error bound condition, Optimization Methods Software, 17, 2002, 605-626.
- [3] J. E. Dennis, On the convergence of Broyden's method for nonlinear systems of equations, Mathematics of Computatiion., 25(115), 1971, 559-567.
- [4] J. Y. Fan, Convergence rate of the trust region method for nonlinear equations under local error bound condition, Computer Optimization Application, 34, 2005, 215-227.
- [5] J. Y. Fan and J. Y. Pan, A modified trust region algorithm for nonlinear equations with new updating rule of trust region radius, International Journal of Computer Mathematics, 87(14), 2010, 3186-3195.
- [6] R. M. Chamberlain, M. J. D. Powell, The watchdog technique for forcing convergence in algorithm for constrained optimization, Mathematical Programming Study, 16, 1982, 1-17.
- [7] L. Grippo, F. Lamparillo, S. Lucidi, A nonmonotone line search technique for Newton's method, SIAM J. Numer. Anal., 23(4), 1986, 707-716.
- [8] N. Deng, Y. Xiao, F. Zhou, Nonmontonic trust region algorithm, Journal of Optimization Theory and Application, 76(2), 1993, 259-285.
- [9] Ph. L. Toint, Non-monotone trust-region algorithm for nonlinear optimization subject to convex constraints, Mathematical Programming 77, 1997, 69-94.
- [10] Y. Yang, W. Y. Sun, A new nonmonotone self-adaptive trust region algorithm with line search, Chinese Journal of Engineering Mathematics, 24(5), 2007, 788-794.
- [11] H. Zhang, W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM Journal on Optimization, 14(4), 2004, 1043-1056.
- [12] A. R. Conn, N. M. Gould, and Ph. L. Toint, Trust-region Methods (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2000).
- [13] J. Nocedal and S. J. Wright, Numerical Optimization (Springer, New York, 2006).
- [14] G. L. Yuan, Z. X. Lu, A BFGS trust-region method for nonlinear equations, Computing, 92(4), 2011, 317-333.
- [15] Masoud Ahookhosh, Hamid Esmaeili, Morteza Kimiaei. An effective trust-region-based approach for symmetric nonlinear systems, International Journal of Computer Mathematics, 90(3), 2013, 671-690.