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Abstract:  

This paper puts forward a new trust-region 

process for solving symmetric systems of equations 

having several variables. The proposed approach 

makes use of the combination of both an efficient 

adaptive trust-region radius and a non-monotone 

method, and this strategy can improve

the efficiency and robustness of the trust-region 

framework. The global convergence and the 

quadratic convergence of the proposed approach are 

established. 

Keywords- adaptive radius, non-monotone 

technique, nonlinear equations, trust-region method 

 

I. INTRODUCTION 

Let F : 
n nR R  be a continuously 

differentiable image in the following form  

1 2( ) ( ( ), ( ), , ( ))T

nF x F x F x F x  , and then 

consider the following symmetric nonlinear systems 

of equations: 

( ) 0, nF x x R= Î        (1) 

This class of problems is incessantly close 

to both constrained and unconstrained optimization 

problems. It is also worth noting that a feasible 

approach to Equation (1) consists in reformulating it 

as a nonlinear unconstrained least-squares problem: 

      
21

min ( ) ( )
2nx R

f x F x


           (2) 

where   denote the Euclidean norm. Nonlinear 

least-squares problems have been comprehensively 

studied by more and more authors such that various 

iterative procedures have been proposed to solve this 

problem, for example [1-4]. 

The trust region framework for solving 

systems of nonlinear equations (1) is such a popular 

of iterative procedure. In each iterate, it can generate 

a trial step kd  by computing an approximate 

solution of the following sub-problem: 
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min ( )
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m d

F J d

f d J F d J J d
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x

and dR d



 



  

 

   (3) 

where 1k k kx x d   , ( )k kf f x , ( )kF F x , 

'J ( )k kF x  is the Jacobian of ( )F x , and 

0k   is the trust-region radius. 

It is clear that the calculation of the exact 

Jacobian kJ  at each iterate is a common drawback 

of sub-problem (3) that straightway increases the 

entire computational cost of solving a problem. 

BFGS and Broyden family updated formulas instead 

of the exact Jacobian matrix kJ  in Equation (3), the 

sub-problem can be rewritten as 

 

    

ˆmin ( )

1

2

  . .

k k k

T T

k k k k k k k k

k k

n

k

m x d

f

a

d B F d B B d

s d dR ndt



  

  

      (4) 

The kB  is satisfied with the following in-equation 

[5] 
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          (5)                       

and               

1

1

min ,kp k

k k

k k

d
c M F

F F





  
   

  
  (6)                   

where (0,1)c , M  is a constant and kp  is the 

smallest non-negative integer p  ensuring that the 

trust-region ratio is greater than a real-valued 

parameter (0,1) . 

Recently, non-monotone techniques are 

generally used in the trust region methods. In 1982, 

the first non-monotone technique that is the so-called 

watchdog technique was proposed by Chamberlain et 

al. [6] for constrained optimization to overcome the 

Maratos effect. Motivated by this idea, Grippo et al. 

first introduced a non-monotone line search 

technique for Newton’s method in [7]. In 1993, Deng 

et al. [8] proposed a non-monotone trust region 

algorithm in which they combined non-monotone 

term and trust region method for the first time. Due 

to the high efficiency of non-monotone techniques, 

many authors are interested in working on the 

non-monotone techniques for solving optimization 

problems [9]. Especially, nowadays some researchers 

are focused on utilizing non-monotone techniques in 

adaptive trust region method and good numerical 

results have been achieved [10].  

The general non-monotone form is as follows: 

( )
0

( ) max ( )
k

l k k j
j m

f x f x 
 


 

(0) 0,m =
 

0 ( ) min{ , ( 1) 1}m k M m k£ £ - +  and 

0M ³  is an integer constant.   

      Actually, the most common 

non-monotone ratio is defined as follows: 

( ) ( )

(0) ( )

l k k k

k

k k k

f f x d
r

m m d

- +
=

-
 

However, although the non-monotone technique has 

many advantages, Zhang et al. [11] found that it still 

has some drawbacks and they proposed a new 

non-monotone 

        (

( )s

)

) (

k
k

k

k k

k k kk

C f x s

x m xm










        (7) 
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1 1 1
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 


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where 

1 1

1, 0
  

1, 1
k

k k

k
Q

Q k  


 

 
   

 min 0,1  ,  max min ,1   and 

 1 min max  , ,k     are two given constants.  

The rest of this paper is organized as follows. 

In Section 2, we introduce the new non-monotone 

trust-region-based approach. In Section 3, we analyze 

the new method and prove the global convergence. 

Some conclusions are given in Section 4. 

 

II. ALGORITHM 1: A FRESH 

NON-MONOTONE 

TRUST-REGION-BASED ALGORITHM  

Step 0: An initial point 0

nx R , a symmetric 

positive definite matrix 0

n nB R  , maxk , c  , 

(0,1) , M 0 , N 0  and 0.   the 

original value 0 0F   , 
2

0 0

1
R

2
F , 

0p  , 0̂ 0r  , 0k   then compute 0 0B F  and 

kF  , maxk k , k̂r  . (Start of outer loop). 

Step 1: Specify the trial point kd  by solving 

sub-problem (5); 1
ˆ

k k kx x d   . 

Step 2: 
2

1 1 1 1

1 ˆˆ ˆˆ( ) ,
2

k k k kF x F F f     ; and 

calculate 1
ˆ

k kAred C f   ,  
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1
ˆ ˆ ˆP ( ) ( )k kred m x m x   , and determine the 

trust-region ratio k̂r  by using ˆ
P

k

Ared
r

red
 . 

If k̂r  , 1p p   and update the trust-region 

radius k  with (6); else 1 1
ˆ

k kx x  . (End of 

inner loop) 

Step 3: 0p  ; and determine k  using (6).  

Step 4: Update 1kB   by (5), and define the 

 ( 1) ( ) 1, Nm k min m k   ; while calculate 

the 1kC   and generate 1k   by (8). 

Step 5:  Set 1 1
ˆ ,k kF F   1k k  , go to step 1. 

In order to testifying the convergence 

analysis of the proposed algorithm, the following 

assumptions are required: 

(A1) Let the level set 

 0 0( ) ( ) ( )nL x x R f x f x    be bounded for 

any given 0

nx R  and ( )F x  be continuously 

differentiable on the compact convex set   

containing the level set 0( )L x . 

(A2) Assume that the following condition holds:  

(J B ) ( )T

k k k kF d           (9) 

(A3) The matrix  kB  is uniformly bounded above; 

that is to say, there exists a constant 1 0M   such 

that   

           1kB M                (10) 

for all  0k N  . 

Moreover, we assume that 0 k k kM F B F , for 

a constant  0 0, 0M k N   . 

(A4) The abatement of the model ˆ
km  is at least as 

much as a fraction of that obtained by the Cauchy 

point; in other words, there exists a constant 

 0,1   such that 

ˆ ˆ( ) ( )

,
ˆ

p

k k k k k

k k

k k k

k

m x m x d

B F
B F min

B


 

 
  
 
 

     (11) 

for all  0k N  . 

From (A3), it is distinct that the matrix 

k kB B  is uniformly bounded above as well. 

Meanwhile, condition (11) can be easily achieved by 

approximately solving the trust-region sub-problem 

(4), on account of some effective procedures [12, 13]. 

The detailed results can be generalized in the 

subsequence lemma. 

 

III. GLOBAL CONVERGENCE 

Lemma 3.1. [14] Suppose that kd  is a solution of 

sub-problem (4) such that  

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

k k k k k

CP

k k k k k

m x m x d

m x m x d

 

  
         (12) 

where 
CP

kd  is the Cauchy point. Then, condition 

(11) holds. 

Lemma 3.2. [15] Suppose that (A2) and (A3) hold, 

the sequence  kx  is generated by Algorithm 1 and 

kd  is a solution of sub-problem (4). Then, we have 

2
ˆ( ) ( ) ( )k k k k k kf x d m x d d    (13)                        

Lemma 3.3. Suppose that the sequence  kx  is 

generated by Algorithm 1. Then the inequality 
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1 1( ) Ck k kf x C    

k  holds, where kC  is defined in (8). 

Proof: We prove 0( )kC f x  by induction. 

Obviously, when 0j  , we have 0 0( )C f x . 

Assume that 
0( )jC f x  holds when 

1, , 1.j k   When j k , from (8), that we 

have  

1 1 1

1 1 0 0

0

(x )

( ) ( )

( )

k ik k k
k

k

k k

k

Q C f
C

Q

Q f x f x

Q

f x





  

 









     (14) 

then we obtain that 1 1 0( ) ( )k k kf x C C f x    . 

We complete the proof. 

Lemma 3.4. Suppose that (A2), (A3) and (A4) hold 

and the sequence  kx  is generated by Algorithm 1. 

Then, the inner cycle of Algorithm 1 is well defined. 

Proof: Assume that the inner cycle of Algorithm 1 

cycles infinity; that is, 0p

k   as p . 

Using the fact that kx  is not the optimum of 

Equation (2), it can be concluded that there exists a 

constant 0   such that 0kF  . These facts, 

(A3) and (11) suggest that  

0

0 2

1

0

ˆ ˆ( ) ( )

,
ˆ

,

,

p

k k k k k

p k k

k k k

k

p

k

p

k

m x m x d

B F
B F min

B

M
M min

M

M




 

 

 

 

 

 

 
 
  

 
 
 

    (15) 

Where 
p

kd  is a solution of sub-problem (4) 

corresponding to p  in the k-th iterate. Now the 

Lemma 3.2, In-equation (15) and lead to 

2
2

0 0

ˆ ˆ( ) ( )

ˆ ( )

ˆ ˆ( ) ( )

( )
1

( )

( ) (( ) )
0,

p

k k k k k

p

k k k

p

k k k k k

p

k

p

k k k

p

k k

p

k

p p

k k

m x m x d

m x d

m x m x d

d

f f x d

f x d

M M   

 



 

 


 


  
  

 

 

as p . Therefore, there exists a sufficiently 

large p , which is called kp , such that 

( )

ˆ ˆ( ) ( )

k

k

p

k k k

p

k k k k k

f f x d

m x m x d


 


 
. 

Besides, from the definition of kC , and from 

Lemma 3.3, we have that k kC f . Therefore, this 

fact along with the previous inequality immediately 

implies that r̂  , which means that kp  is a 

finite integer number, so the inner cycle of Algorithm 

1 is well defined. 

Lemma 3.5. [15] Suppose that (A3) and (A4) hold, 

the sequence  kx  is generated by Algorithm 1 and 

kd  is a solution of sub-problem (4). Then, we have  

2
ˆ ˆ( ) ( ) L

k k k k k k km x m x d F       (16)                           

where   0

2
1 1

1 ,M ,k Mp

k M M
L min c min . 

Theorem 3.6. Suppose that (A1)-(A4) hold. Then, 

Algorithm 1 either stops at a stationary point of 

( )f x  or generates an infinite sequence  kx  

such that  

lim 0k
k

F


              (17) 

Proof: By contradiction, for all sufficiently large k , 

assume that there exist a constant 0   and an 

infinite subset  0K N   satisfying  



International Journal of Recent Engineering Science (IJRES), 

ISSN: 2349-7157, Volume 2 Issue 6 November to December 2015 

38 

www.ijresonline.com 

      
kF                  (18) 

for all k K .    

Using in-equation (14) and k̂r  , it can be written 

that 

 
2

2

ˆ ˆ( ) ( )

L

( )

.

k k k k

k k k

k

k k

k

m x m x d

C f x d

F

L





 

 







 

Now, by taking a limit from both sides of this 

inequality, as k  , we have that 

0k klim L  ; that is kp   for sufficiently 

large k K . But this is possible only if kp  , 

as k  and k K . This clearly results in a 

contradiction with Lemma3.3. Therefore, hypothesis 

(18) is not true, and the result of the theorem is 

given.  

IV. CONCLUSIONS 

This paper is involved with the introduction 

and analysis of a trust-region-based algorithm for 

solving systems of equation by developing an 

effective adaptive trust-region radius and a credible 

non-monotone strategy. Practical utilization of the 

trust-region framework has indicated that the 

application of adaptive techniques can decline the 

number of sub-problem’s count, and the employment 

of non-monotone strategy increases the efficiency 

and robustness of the algorithm. As a result, the two 

methods are combined in a trust-region framework to 

construct a more promising algorithm for solving 

symmetric non-linear systems. 
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