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Abstract:  

In this paper, we propose a new 

non-monotone adaptive trust region method with line 

search for solving unconstrained optimization 

problem. Unlike the traditional trust region methods, 

our new algorithm combine non-monotone adaptive 

trust region strategy with a scale approximation of 

the objective function’s Hessian. Theoretical analysis 

indicates that the new method preserves the global 

convergence under some mild conditions.  
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I. INTRODUCTION 

Consider the following large unconstrained 

optimization problem:  

         min ( )
nx R

f x


               (1)                                       

where ( ) : nf x R R  is a twice continuously 

differentiable function. For a given iteration point
kx , 

line search method has the form defined by 

computing a step-size k in the specific direction kd  

and derives a new point as 1k k k kx x d   . For 

example, in the Armijo-rule line search method, 

given 0s  , (0,1)  and (0,1)  , k is the 

largest in 2, , ,s s s   such that 

( ) T

k k k k k k kf x d f g d             (2)                                   

On the other hand, trust region methods 

compute a trial step kd  by solving the following 

quadratic sub-problem: 

1
2

min ( )

. .

T T

k k k k

k

q d f g d d B d

s t d

  

 
   (3)                           

where ( ), ( ), n n

k k k k kf f x g f x B R     is a 

symmetric matrix which is the Hessian matrix or its 

approximation of ( )f x at the current point kx , 

0k  is called the trust radius and   refers to 

the Euclidean norm. The ratio k between the actual 

reduction 1( ) ( )k kf x f x  and the predicted 

reduction (0) ( )k k kq q d  plays a key role to 

decide whether kd  is acceptable or not and how to 

adjust the trust region radius. The trial step is 

accepted whenever k is greater than a positive 

constant 1 . This leads us to the new 

point 1k k k kx x d   , and the trust region radius 

is updated. Otherwise, the trust region radius must be 

diminished and the sub-problem (3) be solved again. 

Many authors have studied the self-adaptive trust 
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region method [2, 7, 19]. In [17], a new self-adaptive 

adjustment strategy for updating the trust region 

radius was proposed. That is, given 

1 20 1    ， 1 1c  ， 

20 1c  , set 

1

1 1 1 1k k k kg B 

                    (4)                                 

where 

1 2

1 2 2

1 2

, ;

, ;

, .

k k

k k k

k k

c if r

c if r

if r

 

  

  






 
  

 

In 1986, Grippo et al. [3] proposed a 

non-monotone line search for Newton’s method. This 

algorithm accepts the step-size k  whether       

( )( ) ( )

( ) ,

k k k l k

T

k k

f x d f x

f x d





 

 
       (5)                             

where 1
2

(0, )  , ( )
0

( ) max ( )
k

l k k j
j m

f x f x 
 

 ， 

 0 10,0 min 1, ( 1),k km m m M k     and 

0M   is an integer. It has been proved that the 

sequence  ( )kf x  is not increasing. Since then, 

many researchers [4-6] have exploited the 

non-monotone technique and a lot of numerical tests 

have showed that the non-monotone technique 

proposed by Grippo et al. [3] is efficient at some 

extent. In 1993, Deng et al. in [1] made some 

changes and applied it to the trust region method, and 

proposed a non-monotone trust region method for 

unconstrained optimization. Theoretical analysis and 

numerical results show that algorithms with 

non-monotone strategy are more effective than 

algorithms without it. From then on a variety of the 

non-monotone trust region methods have been 

presented [7, 9]. 

Although the non-monotone technique has 

many advantages, however, it has some 

disadvantages too. The iterations may not satisfy the 

condition (5) for sufficiently large k , for any fixed 

bound M  on the memory. Zhang and Hager [8] 

also pointed out that the numerical results are 

dependent on the choice of parameter M  in some 

cases. In order to overcome these disadvantages, 

Zhang and Hager [8] proposed another 

non-monotone line search method, they replaced the 

maximum function value with an average of function 

values. In detail, their method finds a step-size k  

satisfying the following condition: 

( )

( )

k k k k

T

k k

f x d C

f x d





  


          (6) 

where  

1 1 1 ( )

( ), 0,

,k k k k

k

k

Q C f xk

Q

f x k
C     


 



　

ｋ １, 　
  

1 1

1, 0,

1, 1,
k

k k

k
Q

Q k  


 

 
       

and 1 min max min[ , ], [0,1)k      and 

max min[ ,1)   are two chosen parameters. 

Numerical results showed that this non-monotone 

technique was superior to (5). Then, this 

non-monotone was applied to the trust region 

methods [9, 10]. In 2012, M. Ahookhosh et al. [16] 

introduced another non-monotone strategy. They 

replaced kC  in (6) with kD  

( ) (1 )k k l k k kD f f                 (7)                                

for 1 min max[ , ]k    . This non-monotone 

technique is efficient and robust which is showed by 

numerical experiments in [16]. 

The key problem is how to solve the trust 

region sub-problem (3) for the trust region method. 

Many efficient methods for sub-problem (3) have 

been proposed [1, 2, 7]. However, when the scale of 

problem (1) is large, these methods may be too slow 

because all these methods have to store a symmetric 
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matrix kB  and the algorithms are complicated 

relatively. 

A diagonal-sparse quasi-Newton method, 

which replaces the scalar matrix with the diagonal 

matrix, was proposed in [12]. Based on the 

diagonal-sparse quasi-Newton method, Sun et al. [13] 

developed a non-monotone trust region algorithm 

with simple quadratic models, in which the 

approximation of Hessian matrix in the sub-problem 

is a diagonal positive definite matrix.                                                                               

It is obvious that the memory requirements and 

computational complexity for estimating kB  are 

low.  

Inspired by the ideas introduced above, we use 

the new scale approximation of the minimizing 

function’s Hessian in the trust region sub-problem, 

and then combine it with the non-monotone strategy 

proposed by M. Ahookhosh et al. [16]. The purpose 

of this paper is to present a new non-monotone 

adaptive trust region method with line search based 

on simple quadratic models. 

This paper is organized as follows. In Section 

2, we describe our new non-monotone self-adaptive 

trust region method with line search. The properties 

of this new algorithm and the global convergence 

theory are given in Section 3. Finally, some 

concluding remarks are given in Section 4. 

 

II. NEW NON-MONOTONE ADAPTIVE 

TRUST REGION METHOD WITH LINE 

SEARCH 

If we give the initial point 0x , then 0f  

and 0g  can be computed. Suppose I is the n n  

identity matrix and set 0B I . We can get the next 

iteration point 1 0 0x x d  . Suppose that 

( 1)kx k   have been obtained. We compute the 

approximation of the Hessian of the function f at 

kx . From 1 1k k kx x d    we have 

1 1k k kx x d   . By the Taylor’s theorem, we can 

obtain 

1

1

21
1 1 12

( )

( )

( ) ( ) ,

k

k k

T T

k k k k k k

f x

f x d

f x g d d f x d





  

 

   

(8) 

We consider ( )kx I  as an approximation of 

2 ( )kf x , where ( )kx R  . And the ( )kx  can 

be expressed as 

1 1

1 1

2
, 0,

( )
2

, .

T

k k

k

T

k k

if
d d

x

otherwise
d d







 

 





 



       (9) 

where 1 1( ) ( ) T

k k k kf x f x g d     . 

So, the sub-problem (3) can be modified as     

1
2

min ( ) ( )

. .

T T

k k k k

k

q d f g d x d d

s t d

  

 
  (10)                             

The sub-problem (10) can be solved easily. In fact, if 

1
( )k k kx

g


   , set 1
( )kk kx

d g


  ; otherwise 

kd  of sub-problem (10) is the solution of the 

following problem [15]: 

1
2

min ( ) ( )

. .

T T

k k k k

k

q d f g d x d d

s t d

  

 
  (11)                          

  By solving (11), we can compute the 

solution k

k
k kg

d g


  . 

After obtaining kd , then the ratio k  is 

computed by 

( )

Pr (0) ( )

k k k k
k

k k k k

Ared D f x d

ed q q d


 
 


     (12)                                  

Algorithm 2.1 
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Step 1.   Given 0 0, 0, 0 1nx R      ,  

2 10 1c c   , 1 20 1u u   , 0 1  ,  

0  ，0 1  ， min max0 1    , 

0  , set 0k  ， 0B I ， 0 1  . Choose 

parameters min [0,1)  and max min[ ,1)  . 

Step 2.   Compute kg . If 0kg  , stop. Otherwise, 

go to Step 3. 

Step 3.   Solve the sub-problem (10) for kd . 

Compute kD , kAred , kPred and k . 

Step 4.   If 1k  , set k ks d ，

1k k kx x s   and 

 
1 2

1

1 2

, ;

, ,

k k

k

k k

c if

if

  


   



 

 
 

go to the Step 6; otherwise, go to Step 5. 

Step 5.   Select k , which is the largest number in 

 21, , ,   such that 

( ) T

k k k k k k kf x d D g d           (13)                                     

Set k k ks d , 1k k kx x s   , 1 2k kc   . 

Step 6.   Compute 1( )kx  . If 1( )kx    

or 1
1( )kx


   , set 1( )kx   . Let 

1
1 1

1( )

k
k k

k

g
x






 



  , and set 1k k  , go to 

Step 2. 

It is obvious that for all k , 

10 min( , ) ( ) max( , )kx


         (14)                       

In order to ease of reference, we define two 

index sets as below: 

    
1{ }kI k u   and 

1{ }kJ k u  . 

 

III. CONVERGENCE ANALYSIS 

In this section, we will prove the global 

convergence property of Algorithm 2.1. The 

following assumptions are necessary to analyze the 

convergence property. 

(H1) The level set 0 0( ) { ( ) ( )}nL x x R f x f x    

is bounded for any given 0

nx R .  

(H2) There exists a constant 0 0M  , such that 

2

0( )f x M   for all 0( )x L x . 

(H3) The matrix ( )kx I is uniformly bounded, i.e., 

there exists a constant 1 0M  , such that, for 

all k , 1( )kx I M  . 

Lemma 3.1. If kd  is the solution to sub-problem 

(10), then 

1
2 ( )

(0) ( )

min{ , }k

k

k k k k

g

k k x

Pred q q d

g


 

 
        (15)                     

1
2 ( )

m i n { , }k

k

gT

k k k k x
g d g


           (16)                                

Proof. From Lemma 3.2 in [14], we know (15) holds. 

And from (15), we can see 

1
2

1
2 ( )

( )

min{ , }k

k

T T

k k k k k

g

k k x

Pred g d x d d

g


  

 
                       

Consider the above inequality and the fact 

( ) 0T

k kx d d  , (16) holds. Therefore, the lemma is 

true. 

Lemma 3.2. Let kx be the sequence generated by 

Algorithm 2.1. For any fixed 0k  , we have  
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1 1k kf D                           (17)                                         

Proof. Let 0k  be an arbitrary fixed integer. By 

the definition of kD  and 
( )l kf  , we have 

1 1 ( 1) 1 1

1 1 1 1

1

(1 )

(1 )

k k l k k k

k k k k

k

D f f

f f

f

 

 

    

   



  

  



      (18) 

From (18), Lemma 3.2 holds. 

Lemma 3.3. Suppose that the sequence  kx  is 

generated by Algorithm 2.1. The algorithm is well 

defined. 

Proof . The process is similar to Lemma 2.3 in [16]. 

Lemma 3.4. Suppose that the sequence  kx  is 

generated by Algorithm 2.1. Then, for all k J , 

the step-size k  satisfies 

0

(1 ) ( )
min{ , }

2

k
k

x

M

  



         (19)                             

Proof. Let k


  . If 

2k

  , (19) is obvious. We 

only consider the situation when 
2k

  . Then, 

from Step 5 of Algorithm 2.1, we have  

( )T

k k k k kD g d f x d            (20)                                

From Taylor expansion, we get 

2 21
2

( )

( )

k k

T T

k k k k k k

f x d

f g d d f d



  



   
   (21)                     

From (20), (21) and (H1), we obtain 

221
02

T

k k k

T

k k k

T

k k k k

f g d

D g d

f g d M d





 



 

  

        (22)          

where ( , )k

k k k kx x d



   . Therefore, we have 

21
02

(1 ) T

k k kg d M d             (23)                                

From the definition of the kPred , we get  

1
2

( ) T T

k k k kx d d g d                   (24)                               

Considering (23) and (24), we obtain 

20(1 ) ( ) T

k k k k

M
x d d d  


        (25)                      

Thus, 

2

0

0

(1 ) ( )

(1 ) ( )

T

k k k
k

k

k

x d d

d M

x

M

  


  







 

The proof is completed. 

Lemma 3.5. (See Lemma 2.1 in [16]) Suppose that 

(H1) holds, the sequence { }kx  generated by 

Algorithm 2.1 is contained in the level set 0( )L x  

and ( ){ }l kf  is a decreasing sequence. 

Lemma 3.6. (See Lemma 3.2 in [16]) Suppose that 

all conditions of Lemma 3.4 hold. Then, we have 

( )lim ( ) lim ( )l k k
k k

f x f x
 

              (26)                               

Corollary 3.7. Suppose that the sequence { }kx  

generated by Algorithm 2.1. Then we obtain 

lim lim ( )k k
k k

D f x
 

                 (27)                                 

Proof. By the definition of kD and Lemma 3.2, 

we have 

( )k k l kf D f                      (28)                       

Then, by using Lemma 3.6, we complete the 

proof. 

Lemma 3.8. Suppose that all conditions of Lemma 

3.4 hold. Assume that the sequence { }kx  does 

not converge to a stationary point, i.e., there exists 

a constant 0 1   such that for all k , we 

have kg  . Then, we have 
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lim min{ } 0
( )

k
k

kx




               (29)                              

Proof. There exists a constant   such that 

1 ( )
min{ }

kk k k x
f D 


             (30) 

If k I , i.e., 1k  , we have 

1

1

1
12 ( )

1
12 ( )

1 ( )

Pr

min{ , }

min{ , }

min{ , }.

k

k

k

k

k k

k

g

k k x

k k x

k x

f D

ed

g

g

















 

 

  

  

 

          (31)             

If k J , i.e., 1k  . From (13) (16) 

and (20), we have 

1

( )

( )

0

2 ( )

min{ , }

(1 ) ( )
min{ , }

min{ , }

k

k

k

k

k

T

k k k k

g

k k k k x

k
k k x

k k x

f

D g d

D g

x
D

M

D













  





 

  


  

  

   (32)                      

Set 1 2min{ , }   , we can conclude that 

(30) holds. Combining with Corollary 3.7, it 

completes the proof. 

Lemma 3.9. Suppose that the sequence { }kx  

generated by Algorithm 2.1. If there exists a positive 

constant 0  , such that kg  for all k hold, 

there exists a nonnegative integer p , such that 

1k p   . 

Proof. The process is similar to the same proof of 

Lemma 9 in [18]. 

Theorem 3.10. Suppose that (H1)-(H3) and all 

conditions of Lemma 3.8 hold. Let the sequence 

{ }kx  generated by Algorithm 2.1, then we have 

liminf 0k
k

g


                      (33)                                   

Proof. We assume that Formula (33) is not true, that 

is, there exists a positive constant 0  , such that 

kg  for all k                   (34)                           

By Lemma 3.1, Lemma 3.5, (H3) and Formula 

(34), we have 

1

1 1

1

1

1
12 ( )

1
12 ( ) ( )

2
1

12 ( )

2
1

12

( ( )) ( ( ))

Pr

min{ , }

min{ , }

min{ ,1}

min{ ,1}

k

k

k k k

k k

k

k k k k

k k I

k

k I

g

k k x

k I

g g

k x x

k I

k kx

k I

k kM

k I

D f x D f x

ed

g

g

g

g





 









 

 



 

 











    



 







 











which implies 

min{ ,1}k

k I




                   (35) 

It follows that Lemma 3.9 that I is an infinite 

set. Thus, by Formula (35), we have 

                             
,

lim 0k
k I k


 

                        

(36) 

On the other hand, for k I , we have 

1k  . Hence, there exists a constant 0  , such 

that k   holds for sufficiently large k I , 

which is a contradiction with Formula (36). Theorem 

3.10 has been proved. 

 

IV. CONCLUSIONS 

In this paper, we present a new 

non-monotone self-adaptive trust region method with 

Armijo-type line search strategy based on simple 

quadratic models. With the help of line search, new 

algorithm can reduce the number of the solving 

sub-problems. And the form of the new method is 
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very simple. Under some mild conditions, we proved 

the global convergence result of the proposed 

method. 
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