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Abstract - Identifying landslides and producing landslide susceptibility maps are essential components in supporting planners, 

local administrators, and decision-makers in effective disaster management strategies. The accuracy of these susceptibility maps 

plays a pivotal role in mitigating potential loss of life and property. Effective models for landslide susceptibility mapping require 

the integration of multiple factors that characterize both terrain features and meteorological conditions. Numerous algorithms 

have been developed and implemented in the literature to enhance the accuracy of these maps. This study employs a hybrid 

approach combining four machine learning techniques: Logistic Regression (LR), Random Forest (RF), Support Vector 

Classifier (SVC), and CatBoost, supplemented by a grid search to determine optimal hyperparameter settings. This 

methodological framework aims to achieve precise and reliable predictions for generating landslide susceptibility maps for 

Sikkim, India. In this study, eleven conditioning factors were considered, including aspect, slope, Land Use and Land Cover 

(LULC), elevation, distance to roads, distance to streams, the Normalized Difference Vegetation Index (NDVI), plan curvature, 

soil type, rainfall, and seismic activity. The performance of the models was assessed using several metrics, including training 

score, testing score, kappa, sensitivity, specificity, and Area Under the Curve (AUC). The results indicated that the random forest 

model outperformed the other models, achieving kappa and AUC values of 0.519 and 0.756, respectively, in developing 

susceptibility maps. Consequently, the random forest model emerges as the most reliable and effective tool for landslide 

susceptibility mapping within this study, making it an optimal choice for such predictive analyses. 

Keywords - Landslide susceptibility mapping, Machine learning, CatBoost, Hybrid techniques, Random Forest. 

1. Introduction  
A natural disaster is characterized by an unexpected 

alteration in environmental conditions, such as earthquakes, 

tsunamis, and floods, which can result in significant financial, 

environmental, and human losses. Among these phenomena, 

landslides rank among the most devastating, leading to 

dramatic transformations in landscape morphology and 

causing damage to both natural and built structures. 

Landslides are mass movements of soil or rock that involve 

shear displacement along one or multiple slip surfaces, which 

may be easily identifiable or inferred from surrounding 

conditions. Identifying landslide-prone areas is crucial for 

ensuring human safety and mitigating adverse effects on 

regional and national economies. Assessing landslide 

susceptibility zones and developing accurate and current 

landslide susceptibility maps have emerged as a prominent 

area of research in hazard management. Such maps provide 

essential information for government agencies, urban 

planners, decision-makers, and local landowners, enabling 

them to formulate emergency plans to minimize detrimental 

impacts on infrastructure, superstructure, and human life [1–

3]. Implementing landslide assessments can significantly 

reduce associated hazards; nonetheless, it is vital to catalogue 

historical landslide events to identify trends effectively. 

Producing hazard zonation maps is integral to this process, 

allowing decision-makers to pinpoint sensitive areas for 

enhanced land-use management. The primary objective of 

landslide assessment is the preparation of landslide 

susceptibility maps, which incorporate both spatial and 

temporal predictions of landslides at a regional scale. This task 

presents considerable challenges to the global research 

community focused on climate change. The outcomes are 

influenced by the data utilized and the modelling 

methodologies applied, which is a central emphasis of 

ongoing research. In the case of Sikkim, the region's physical 

characteristics—including tectonic activity, geological 

structure, topography, and meteorological factors—frequently 

contribute to natural hazards resulting in significant socio-

economic impacts and loss of life. Sikkim has encountered 

numerous natural disasters, resulting in substantial human 

casualties, injuries, and property damage. When natural 

disasters are ranked according to their frequency of 

occurrence, landslides occupy the second position following 

earthquakes [4–7]. 

http://www.internationaljournalssrg.org/
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 Numerous techniques have been developed and 

successfully utilized in the literature to create landslide 

susceptibility maps. These modelling approaches can be 

categorized into key groups, including geomorphological 

hazard mapping, analysis of landslide inventories, heuristic 

methods, and statistical or geotechnical models. Several 

statistical methods were utilized for landslide zonation. 

Arabameri et al. [8] conducted a comparative study on various 

methodologies for landslide susceptibility mapping (LSM) in 

Semnan, Iran.  

The study examined four different approaches: Index of 

Entropy (IOE), Frequency Ratio (FR), Weights-of-Evidence 

(WofE) and Analytical Hierarchy Process (AHP), 

incorporating thirteen conditioning factors into the analysis. 

Considering several conditioning factors, Bopche et al. [9] 

applied the weights-of-evidence technique for landslide 

zonation in Pune, India. Tang et al. [10] performed a 

comparative analysis between logistic regression and the 

Analytical Hierarchy Process Information Value (AHP-IV) in 

Zhushan County, China, utilizing eight conditioning factors in 

their study. Cervi et al. [11] conducted a comparative study of 

the weight of evidence, the fuzzy logic, and SHALSTAB for 

landslide zonation in Reggio Emilia Province, Italy. In 

addition to the aforementioned statistical methods, machine 

learning techniques have emerged as more advanced tools for 

landslide susceptibility mapping.  

Kavzoglu et al. [12] conducted a comparative study 

among Random Forest, Extreme Gradient Boosting 

(XGBoost) and Natural Gradient Boosting (NGBoost) for 

landslide zonation of Macka County of Trabzon province, 

Turkey. Karakas et al. [13] evaluated the efficacy of 

multilayer perceptron neural networks compared to Random 

Forest for landslide susceptibility mapping in Elazig, Turkey. 

Colkesen et al. [14] conducted a comparative analysis of 

Support Vector Machine and logistic regression techniques for 

landslide zonation in Trabzon, Turkey. Aditian et al. [15] 

assessed the performance of artificial neural networks, 

frequency ratio, and logistic regression in the context of 

landslide susceptibility in Ambon, Indonesia. In addition to 

the standalone algorithms previously mentioned, hybrid 

algorithms have also been employed for landslide 

susceptibility mapping.  

These advanced methods combine multiple algorithms in 

parallel, enhancing the evaluation process and resulting in 

more reliable and accurate performance. Wu et al. [16] 

conducted a comparative study on the effectiveness of bagging 

and AdaBoost techniques for landslide zonation in Shaanxi 

Province, China. Matougui et al. [17] performed a thorough 

comparative analysis of heterogeneous ensemble models—

including stacking (ST), voting (VO), weighting (WE), and 

meta-dynamic ensemble selection (DES)—in contrast to 

homogeneous ensemble models such as AdaBoost (ADA), 

bagging (BG), random forest (RF), and random subspace 

(RSS) for the Djebahia region of Algeria. Numerous studies 

have been undertaken in various locations worldwide to 

enhance the accuracy and reliability of these methods [18–21]. 

The study employs random forest (RF), logistic regression 

(LR), support vector classifier (SVC), and CatBoost to 

develop a landslide susceptibility map for Sikkim, India. 

These machine learning classifiers have been selected due to 

their growing prominence and effectiveness in engineering 

applications. Performance evaluations were conducted using 

standard accuracy metrics, including user and overall 

accuracies, receiver operating characteristics (ROC) and 

success rate curves, to facilitate objective and comprehensive 

comparisons among the methods. 

2. Study Area 
Sikkim, a small yet significant state in the North-Eastern 

Himalayas of India, encompasses 7096 square kilometers of 

diverse landscapes (Figure 1). Characterized by younger 

mountain systems, the region is rich in geological features but 

susceptible to landslides and seismic activity. Gangtok, the 

vibrant capital, serves as a gateway to explore elevations that 

range from 300 to 8000 meters above sea level, with 66% of 

the area being mountainous and often adorned with snow.  

The climate in Sikkim is varied, transitioning from 

tropical to alpine, which fosters a unique ecosystem. Rainfall 

patterns indicate substantial precipitation in Gangtok (3494 

mm), contrasting sharply with the minimal rainfall in Thangu 

(82 mm). Culturally, Sikkim boasts a multi-ethnic population, 

contributing to the state's rich heritage. As of 2011, it 

comprised less than 0.05% of India's total population, with a 

population density of 86 people per square kilometer. This 

diversity and the region's natural beauty position Sikkim as an 

important ecological and cultural study area. 

The uneven distribution of inhabitants in Gangtok has 

significantly strained urban services due to rapid population 

growth in a limited area. This strain manifests as traffic and 

transportation issues, a lack of modern commercial 

development, housing shortages, and the rise of informal 

settlements. Gangtok struggles to meet the demands of its 

increasing population, with unregulated development harming 

the natural environment. The geological landscape of the 

Sikkim Himalaya, particularly along the Teesta valley, is 

shaped by the Main Central Thrust (MCT) and Main 

Boundary Thrust (MBT) zones, which separate various grades 

of Himalayan rocks. The central crystalline area in North 

Sikkim exhibits high-grade gneisses, migmatites, and granitic 

intrusions. According to India's seismic zone zoning map, 

Sikkim is located in Zone IV for seismic risk. 

3. Landslide Conditioning Factors (LCFs) 
The study identified eleven key conditioning factors 

essential for accurate landslide susceptibility mapping and an 

analysis of their spatial distribution (Figure 2).  
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Fig. 1 Study area map 

The slope map of the study area has been categorized into 

five distinct classes: 0-15° (very low), 15-25° (low), 25-35° 

(moderate), 35-45° (high), and 45-90° (very high).  

The aspect map has been classified into nine categories: 

flat, north, northeast, east, southeast, south, southwest, west, 

and northwest. The elevation map is divided into three classes: 

(i) 222 – 2460 m, (ii) 2460 – 4227 m, and (iii) 4227 – 7899 m. 

The distance to the streams map is classified into five ranges: 

(i) 111.32 – 556.6 m, (ii) 556.6 – 1335.84 m, (iii) 1335.84 – 

2115.08 m, (iv) 2115.08 – 2894.32 m, and (v) 2894.32 – 

6233.92 m.  

The distance to roads map is also categorized into five 

classes: (i) 111.32 – 2449.04 m, (ii) 2449.04 – 5343.36 m, (iii) 

5343.36 – 9016.92 m, (iv) 9016.92 - 14026.32 m, and (v) 

14026.32 – 22264 m. The land use/land cover (LULC) map is 

classified into nine categories: (i) Water, (ii) Trees, (iii) 

Flooded vegetation, (iv) Crops, (v) Built area, (vi) Bare 

ground, (vii) Snow/ice, (viii) Clouds, and (ix) Rangeland. The 

normalized difference vegetation index (NDVI) map is 

classified into five classes: (i) (-) 0.603 – 0.025, (ii) 0.026 – 

0.125, (iii) 0.126 – 0.232, (iv) 0.233 – 0.465, and (v) 0.466 – 

1. The plan curvature map has also been classified into five 

categories: (i) (-) 1.92 to (-) 0.034, (ii) (-) 0.034 to (-) 0.011, 

(iii) (-) 0.011 to 0.0003, (iv) 0.0003 to 0.023, and (v) 0.023 to 

1.016. The rainfall map is divided into five categories: (i) 1000 

- 1647 mm, (ii) 1648 - 2235 mm, (iii) 2236 - 2729 mm, (iv) 

2730 - 3353 mm, and (v) 3354 - 4000 mm.  

The soil type map has been classified into five categories: 

(i) Humid Acrisols, (ii) Dystric Cambisols, (iii) Gleysols luvi 

Soils, (iv) Lithosols, and (v) Dystric Regosols. Lastly, the 

earthquake map is categorized into three magnitude classes: 

(i) 0.011 - 3.291, (ii) 3.292 - 6.018, and (iii) 6.019 - 11.794.  

These thematic maps were meticulously prepared to 

enhance landslide susceptibility analysis by integrating them 

with landslide occurrence data, enabling a more precise and 

comprehensive assessment. 
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Fig. 2 Landslide conditioning factors (LCFs) 

4. Landslide Inventory and Methodology 
4.1. Landslide Inventory 

The landslide data utilized for this analysis has been 

sourced from Bhukosh, Geological Survey of India, 

comprising 693 data points, as illustrated in Figure 3. These 

data points were imported into ArcGIS, where polygons were 

generated to create a comprehensive dataset for further 

analysis. An additional 695 non-landslide data points were 

randomly generated within ArcGIS to ensure a balanced 

dataset and corresponding polygons were constructed. By 

integrating the LCFs, landslide and non-landslide data, a 

consolidated dataset consisting of 12165 data points was 

developed. This dataset was subsequently divided into a 70:30 

ratio, allocating 70% for training and 30% for testing to 

facilitate thorough analysis. The distribution and variability of 

each input variable on landslide are shown in Figure 4 . Figure 

4 illustrates notable correlations among various features, 

indicating significant relationships between them. For 

example, the correlation coefficient of 0.61 between Land Use 

and Land Cover (LULC) and Elevation emphasizes how 

vegetation patterns and human activities fluctuate with 

altitude.  
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Fig. 3 Landslide data points of the study area 

Additionally, a moderate correlation of 0.53 between the 

Normalized Difference Vegetation Index (NDVI) and Rainfall 

highlights the influence of precipitation on vegetation health 

and density. Furthermore, a correlation of 0.58 between 

Rainfall and Soil Type suggests that soil characteristics are 

shaped by rainfall distribution, impacting factors such as soil 

moisture and composition. Conversely, some features display 

minimal correlation, indicating weaker interdependence. 

For instance, the weak correlation between Elevation and 

Soil Type implies that soil properties are predominantly 

independent of altitude. Similarly, Rainfall and Elevation 

exhibit a low correlation, indicating that rainfall patterns are 

not strongly associated with elevation variations within the 

region. The correlation between NDVI and Elevation is also 

low, suggesting that altitude in this study area does not 

significantly influence vegetation density. These insights into 

feature correlations are crucial for understanding the interplay 

of factors contributing to landslide susceptibility. Identifying 

highly correlated features aids in reducing redundancy within 

models while including weakly correlated features ensures the 

diversity and independence of factors considered in the 

analysis. 

4.2. Methodology 

The study's methodology is shown in Figure 5, illustrating 

the step-by-step process undertaken to achieve reliable 

landslide susceptibility mapping. Prior to conducting the 

analysis, the optimal hyperparameters for all models— 

Random Forest (RF), Logistic Regression (LR), Support 

Vector Classifier (SVC) and CatBoost—were established 

through the application of Grid Search.  

This method is a systematic approach for hyperparameter 

tuning, thoroughly exploring a defined range of 

hyperparameter values to identify the combination that 

produces the best performance for each model. The specific 

ranges of hyperparameters evaluated in this study are detailed 

in Table 1.  

For example, we carefully examined parameters such as 

the number of estimators and maximum depth for the Random 

Forest model, the kernel type and regularization parameter for 

SVM, and the learning rate and number of iterations for 

CatBoost. This rigorous optimization ensured that each model 

was finely tuned to its most effective configuration for 

landslide susceptibility mapping.  
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Fig. 4 Correlation matrix of conditioning factors 

 
Fig. 5 Methodology of the study 
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Table 1. Optimal hyperparameters using grid search 

Model Hyperparameters Range Optimal Values 

LR C = [1-200]; Step Size = 5 1 

RF 
n_estimators = [1 - 200]; Step Size = 5 31 

max_depth = [1-10]; Step size = 1 8 

SVC 

Kernel = [linear, polynomial, rbf] rbf 

C = [1-200]; Step Size = 5 56 

Degree = [1,2,3] nil 

Catboost 

n_estimators = [1 - 200]; Step Size = 5 76 

depth=[1-10] 8 

learning_rate=[0.1,0.01,0.001] 0.1 

 

Upon establishing the optimal hyperparameters, 

susceptibility maps for the study area were generated utilizing 

the calibrated models. These maps illustrate the likelihood of 

landslides occurring throughout the region. The results 

derived from the various models were subsequently compared 

to assess their performance. This comparative analysis aimed 

to identify the most accurate and reliable model for landslide 

susceptibility mapping, thereby ensuring robust and 

meaningful outcomes for decision-making and risk 

assessment purposes. 

5. Results and Discussion 
The study employed four machine learning techniques—

Support Vector Machine (SVM), Logistic Regression (LR), 

Random Forest (RF) and CatBoost—for landslide 

susceptibility mapping. The hyperparameters for each model 

were meticulously optimized through a grid search, as detailed 

in Table 1. Utilizing these optimal hyperparameters, 

comparative results were generated, and corresponding maps 

were produced.  

It is important to highlight that the performance of the 

classifiers is significantly influenced by the Area Under the 

Curve (AUC), with a value of 1.0 representing optimal 

performance. The ROC curves in Figure 6 illustrate the 

classification performance of the models, with the AUC 

values highlighting their ability to distinguish between 

classes. The AUC values for the models are 0.743 for Logistic 

Regression (LR), 0.753 for Support Vector Classifier 

(SVC_RBF), 0.765 for Random Forest (RF), and 0.762 for 

CatBoost. The variation in these AUC values reflects 

differences in the models’ underlying algorithms, levels of 

complexity, and effectiveness in capturing the relationships 

between features and the target variable.  

The ROC curves of RF, CatBoost, and SVC are closer to 

the plot's top-left corner than LR, indicating better 

classification performance. Notably, these models achieve 

AUC values exceeding 0.75, suggesting superior 

discriminatory power and overall performance compared to 

LR. Additionally, the evaluation of the model is based on other 

metrics, including training score, testing score, sensitivity, 

specificity, and kappa, as shown in Figure 7. In addition to the 

ROC and evaluation metrics analysis, Figure 8 presents the 

confusion matrices of the models, revealing their predictive 

accuracy. The total number of misclassifications for each 

model further substantiates the AUC findings. Logistic 

Regression exhibits the highest number of misclassifications 

at 966, while Random Forest has the fewest at 889, followed 

by CatBoost with 897 and SVC (RBF kernel) with 929. These 

results underscore the enhanced performance of RF, CatBoost, 

and SVC over LR, as evidenced by their higher AUC values 

and fewer misclassifications. This combined evaluation 

demonstrates the strengths of RF, CatBoost, and SVC in 

accurately predicting landslide susceptibility, making them 

more reliable choices for this task. 

The landslide susceptibility maps generated for the 

models mentioned earlier are presented in Figure 9. Figure 10 

illustrates the area distribution for each class across the 

various machine learning models. In the case of Logistic 

Regression, the highest area classification, at 24.62%, falls 

within the High susceptibility category. This indicates that a 

significant portion of the study area is predicted to be at a 

relatively elevated risk for landslides.  

For the Random Forest model, the largest proportion, 

30.49%, is categorized as Moderate susceptibility, suggesting 

a greater emphasis on regions at moderate risk. Similarly, the 

SVC (RBF) model assigns the highest area percentage of 

26.01% to the High susceptibility class, aligning closely with 

the Logistic Regression model, albeit with a minor difference 

in magnitude. In contrast, the CatBoost model also classifies 

the largest area, 30.68%, into the Moderate susceptibility 

category, similar to the Random Forest findings but slightly 

higher in percentage.  

These results reveal the distinct focus of Random Forest 

and CatBoost on moderate-risk areas compared to the other 

models. The variations in classification outcomes underscore 

the impact of the underlying algorithms on the results, with 

each model highlighting different susceptibility levels based 

on its capacity to discern patterns within the dataset. This 

variability emphasizes the significance of evaluating multiple 

models to thoroughly understand landslide susceptibility 

within the study area. 
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Fig. 6 ROC curves of all ML models 

 
Fig. 7 Evaluation metrics for the ML model 
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Fig. 8 Confusion matrix of classification models 

 
Fig. 9 Generated LSM by all ML models 
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Fig. 10 Area distribution of the study area by ML models 

6. Conclusion 
Identifying regions at risk of landslides and accurately 

determining their locations based on specified susceptibility 

levels are crucial for effective planning activities. Various 

methodologies have been proposed in the literature for 

developing landslide susceptibility maps. This study evaluates 

the effectiveness of GIS-based techniques, specifically 

Logistic Regression (LR), Random Forest (RF), Support 

Vector Classifier (SVC), and CatBoost, in creating a landslide 

susceptibility map for Sikkim, India. These methodologies 

were applied to utilize a range of factors, including aspect, 

slope, land use and land cover (LULC), elevation, distance to 

roads, distance to streams, Normalized Difference Vegetation 

Index (NDVI), plan curvature, soil type, rainfall, and 

earthquake. In this study, a comprehensive set of evaluation 

metrics was employed to assess and compare the performance 

of the models, including training score, testing score, kappa 

coefficient, specificity, sensitivity, and Area Under the Curve 

(AUC). These metrics provided a robust framework for 

analyzing each model's predictive accuracy and reliability in 

classifying landslide susceptibility. Based on the evaluation 

results, the Random Forest (RF) model demonstrated superior 

performance compared to the other models.  

It achieved the highest kappa coefficient of 0.519, which 

reflects a strong agreement between predicted and actual 

classifications, accounting for any chance agreement. 

Additionally, the RF model recorded the highest AUC value 

of 0.756, indicating its exceptional ability to distinguish 

between classes and reliably predict landslide susceptibility.  

Furthermore, the confusion matrix analysis revealed that 

the RF model had the least misclassifications, with 889 

incorrectly classified instances, making it the most accurate 

among the evaluated models. This result underscores the RF 

model's ability to minimize prediction errors and highlights its 

robustness in handling complex datasets with multiple 

conditioning factors. Overall, the combination of high kappa, 

superior AUC, and minimal misclassifications establishes the 

RF model as the most reliable and effective tool for landslide 

susceptibility mapping in this study, making it an optimal 

choice for such predictive analyses. 
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