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Abstract - This research presents the development and evaluation of an Energy Efficiency Enhancement Model (EEEM) tailored 

for cognitive radio networks, specifically integrating underlay techniques with energy harvesting capabilities. The study 

meticulously addresses key objectives, beginning with the creation of security-enhanced spectrum sensing algorithms featuring 

an Energy detector, ensuring robust and reliable spectrum utilization for enhanced network security. Moreover, an optimized 

dynamic power allocation algorithm was developed, facilitating real-time adjustments to transmit power based on channel 

conditions and RF energy harvesting levels, thereby optimizing power consumption and maximizing data transmission rates. 

Through extensive performance evaluation, the proposed scheme showcases notable enhancements across various metrics. 

Notably, the EEEM achieves an average throughput improvement of approximately 39.91% over the existing model, 

demonstrating its capacity to efficiently utilize resources for higher data transmission rates across diverse Signal-to-Noise Ratio 

(SNR) levels. Spectral efficiency witnesses an average improvement of about 22.8%, showcasing the model's effectiveness in 

optimizing data transmission per unit bandwidth. The enhanced model also shows approximately a 37.5% improvement in power 

consumption compared to the existing model based on the given final power consumption values. These findings highlight the 

significant enhancements achieved by the EEEM in improving throughput, spectral efficiency, and spectrum utilization efficiency, 

positioning it as a promising approach for enhancing performance in underlay cognitive radio networks with RF energy 

harvesting capabilities. Additionally, the comparative validation against existing energy efficiency schemes further validates the 

superiority and practical applicability of the EEEM, consolidating its potential for advancing energy-efficient communication 

networks.  
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1. Introduction  
In recent years, the exponential growth in wireless 

communication demands has led to an unprecedented strain on 

the available radio spectrum resources. Traditional static 

spectrum allocation methods, where specific frequency bands 

are assigned to different cellular networks, have become 

inefficient and unable to adapt to the dynamic and varying 

nature of wireless traffic. The proliferation of various radio 

access networks has led to a heterogeneous landscape in future 

network development. This diversity entails the synchronicity 

and sharing of frequency spectrum resources, exacerbating the 

issue of spectrum insufficiency. Consequently, spectrum 

efficiency and interference control in diverse networks emerge 

as major concerns within the wireless network domain [8]. To 

address this issue, dynamic spectrum allocation schemes in 

cognitive radios have emerged as promising solutions. In a 

coordinated multi-cell system, where multiple base stations 

work together to serve a large number of users, efficient 

spectrum allocation is crucial for enhancing network capacity, 

reducing interference, and improving overall system 

performance. Hence, the development of an Energy Efficiency 

Enhancement Model (EEEM) in cognitive radio networks 

using underlay techniques with energy harvesting offers an 

intelligent and adaptive approach to optimize spectrum 

allocation dynamically and improve energy efficiency. Other 

works in the literatures have not explored the underlay 

technique specifically with the integration of energy 

harvesting, and this work will focus on covering this gap. 

2. Cognitive Radio Networks (CRNs)  
In CRNs, users are typically divided into two main 

categories: Primary Users (PUs), who are licensed users with 

exclusive access rights to licensed spectrum, and Secondary 

Users (SUs), who are unlicensed users. The fixed spectrum 

allocation policy prioritizing licensed spectrum allocation to 

PUs. However, SUs have the ability to detect vacant spectrum 
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bands in immediate, called spectrum holes. These band 

opportunities arise when licensed spectrum remains unused by 

PUs. SUs take advantage of these spectrum holes for their data 

transmission needs. Cognitive Radio technology embodies 

intelligent wireless technology capable of sensing and 

adapting to the radio environment dynamically. 

 

2.1. Cognitive Radio (CR) Access Paradigms  

2.1.1. Underlay Cognitive Radio 

Secondary users can transmit alongside primary users 

(Pus), using the same spectrum band, as long as they keep their 

interference below a certain level. This is achieved through 

power control or dynamic spectrum sensing, allowing for 

efficient spectrum use without disrupting primary 

transmissions. 

 

2.1.2. Overlay Cognitive Radio 

Secondary users (Sus) can access the spectrum by sharing 

it with primary users in a way that avoids interference. They 

use spectrum sensing and coordination to find idle spectrum 

bands or transmission opportunities, ensuring minimal impact 

on primary users. This approach offers flexible spectrum 

access while prioritizing primary communications. 

 

2.1.3. Interweave Cognitive Radio 

Interweave CR permits SUs to opportunistically exploit 

the spectrum band during periods of inactivity or low 

utilization by primary users. By performing spectrum sensing, 

secondary users can detect idle spectrum intervals or gaps 

between primary transmissions, allowing them to transmit 

their own data without interfering with ongoing primary 

communications. The goal of interweave cognitive radio 

techniques is to maximize spectrum utilization by efficiently 

exploiting temporal variations in primary user activity, 

thereby ensuring optimal use of the available spectrum 

resources while avoiding harmful interference with primary 

transmissions. 

 

2.2. Spectrum Sensing and Energy Detection 

Spectrum detection is a crucial aspect of CRNs, allowing 

them to speculatively access underutilized spectrum bands 

whereas circumventing intrusion with licensed users. One of 

the primary methods employed in spectrum sensing is energy 

detection. Energy detection involves measuring the power 

level in a particular frequency band to determine whether it is 

occupied or vacant. This method is particularly useful in 

scenarios where there is little to no prior knowledge about the 

signals present in the environment. 

 

Recent advancements in energy detection techniques 

have focused on improving detection performance in dynamic 

and noisy environments. For instance, machine learning 

algorithms have been integrated into energy detection systems 

to adaptively adjust detection thresholds based on the 

observed noise floor and signal characteristics. Research by 

authors like [2] has explored the use of deep learning models 

for enhancing energy detection accuracy in CRNs. 

Furthermore, cooperative spectrum detection, where multiple 

CR users collaborate to make joint sensing decisions, has 

gained traction in recent years. Cooperative schemes leverage 

the diversity of observations from multiple nodes to improve 

detection reliability and robustness against fading and 

shadowing effects. Studies such as that by [14] have 

investigated cooperative energy detection techniques 

employing distributed consensus algorithms, enabling 

efficient collaboration among cognitive radio nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 1 Cognitive radio access paradigms 
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Energy detection also faces challenges related to 

spectrum sensing in dynamic environments with rapidly 

changing signal conditions. The presence of noise uncertainty, 

fading, and interference from other users can degrade 

detection performance.  

 

To address these challenges, researchers have proposed 

adaptive sensing algorithms that dynamically adjust sensing 

parameters based on real-time channel conditions. For 

instance, techniques such as adaptive thresholding and 

channel-aware sensing have been explored to enhance the 

robustness of energy detection in dynamic spectrum access 

environments [3]. 

 

2.3. Review of Energy Efficiency Enhancement in Underlay 

Cognitive Radio 

Several papers propose energy-efficient frameworks for 

enhancing throughput and maximizing energy efficiency in 

CRNs. [4] Moreover, [5] introduces frameworks aimed at 

enhancing throughput while maintaining energy efficiency by 

exploiting transmission mode diversity. The Research Gap 

identified is a lack of detailed exploration of underlay 

techniques and their specific impact on energy efficiency. 

Optimization techniques play a vital role in maximizing 

energy effectiveness in CRNs. [12] focused on optimization 

approaches, including worst-case optimization and secrecy 

energy efficiency maximization, respectively. The research 

gap in their work is Limited discussion on practical 

implementation and validation of proposed optimization 

techniques. 

[9] and [10] propose methods for optimizing the spectral-

energy efficiency tradeoff in heterogeneous and underlay 

CRNs. These studies address the challenge of balancing 

spectral efficiency with energy consumption in dynamic CR 

environments. The research gap in their work is Limited 

investigation into the specific challenges and opportunities of 

underlay techniques in heterogeneous CRNs. 

Energy-efficient power allocation strategies are explored 

in several papers. [11] and [13] discussed power allocation 

techniques for underlay cognitive radio systems and multi-

user underlay CR networks, respectively, aiming to minimize 

energy consumption while ensuring reliable communication. 

The research gap in their work is little or no exploration of 

dynamic power allocation strategies considering varying 

network conditions. 

[7] investigate energy efficiency enhancement in hybrid 

overlay-underlay CRNs by leveraging energy harvesting and 

cooperative spectrum sensing techniques. This approach aims 

to maximize energy efficiency while improving spectrum 

utilization and reliability. However, emphasis was not made 

regarding the discussion on the energy overhead associated 

with implementing security mechanisms in underlay CRNs. 

Some papers also focus on specific applications of 

energy-efficient CRNs. [6] explored the energy-efficient 

organization of unmanned aerial vehicles (UAVs) in underlay 

CR systems, addressing the unique energy constraints and 

communication requirements of UAVs. However, a 

discussion on practical implementation challenges and 

scalability issues in UAV-based CRNs was not given. 

[1] discussed energy efficiency in CR-assisted device-to-

device (D2D) communication networks, highlighting the 

importance of energy-efficient communication protocols and 

resource allocation strategies in D2D scenarios. However, 

exploration of underlay D2D communication scenarios and 

their energy efficiency implications was absent. 

 

3. Materials and Methods  
3.1. Overview 

In this research work, the choice to develop an enhanced 

energy effectiveness scheme in CRNs stems from the growing 

request for wireless communication services and the need for 

sustainable and resource-efficient solutions. Traditional 

wireless networks often face challenges related to spectrum 

scarcity and inefficient spectrum utilization, leading to 

suboptimal energy consumption. Cognitive Radio Networks 

(CRNs) aim to address these issues by enabling dynamic 

spectrum access, allowing SUs to access underutilized 

frequency bands licensed to PUs opportunistically. 

 

The Python and MATLAB simulation environments have 

been chosen for their versatility and effectiveness in modelling 

complex systems. The simulators will replicate the multi-cell 

wireless communication system, capturing the dynamic 

interplay of various factors that influence spectrum allocation 

and energy efficiency. By incorporating varying traffic 

demands, channel conditions, and interference scenarios, the 

simulator aims to mirror real-world conditions, providing a 

controlled yet realistic environment for testing and validating 

the proposed robust energy efficiency maximization scheme.  

3.2. System Model and Problem Formulation 

In CRNs with N SUs and M channels, the objective is to 

optimize Energy Efficiency (EE) while ensuring that 

interference to the PUs receiver remains below a 

predetermined threshold. This involves formulating a transmit 

power allocation optimization problem, taking into account 

practical constraints such as channel conditions and power 

limitations. The goal of the EE enhancement model is to strike 

a balance between spectral efficiency and energy 

conservation, maximizing the efficient use of available 

spectrum resources while minimizing energy consumption.  

This study focuses on a CR system consisting of primary and 

secondary links, as illustrated in Fig. 2. The secondary link 

operates over a smooth vanishing channel with flawless 

Channel-Side-Information (CSI), considering immediate 

Channel-Power-Gain (CPG) and Additive-White-Gaussian-

Noise (AWGN). The additive noise is modeled as an 
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independent random variable. The primary transmitter 

operates at constant power, while the secondary transmitter 

uses instantaneous power. This setup enables the analysis of 

optimal power allocation strategies for EE maximization. 

 

 
Fig. 2 Co-existence of PUs and Sus 

 

In the spectrum-sharing framework, both primary and 

secondary links apportion the same frequency band, leading to 

a complex interference dynamic. The received signal-to-

interference-plus-noise ratio (SINR) at the side of the 

secondary receiver is given as: 

 

𝛾𝑖 = log2(1 + SNR𝑖)    (1) 

 

Where 𝛾𝑖  is the SNIR for user i. 

 
Building on the existing model proposed by Zhang and 

Zhang (2019), our goal is to exploit the energy efficiency of 

the secondary link by cooperatively augmenting the transmit 

power and interference management strategies, subject to 

constraints on interference threshold, power budget, and 

quality of service. This novel approach aims to strike a balance 

between spectral efficiency, energy conservation, and 

interference mitigation, paving the way for more robust and 

sustainable spectrum-sharing solutions. 

Maximize: 

∑  𝑁
𝑖=1 log2 (1 +

𝑃𝑖|ℎ𝑖𝑖|
2

𝜎2+∑  𝑁
𝑗−1,𝑗≠𝑖  𝑃𝑗|ℎ𝑖𝑗|

2)   (2) 

Subject to: 

0 ≤ 𝑃𝑖 ≤ 𝑃max, ∀𝑖  (3) 

Given that: 

𝑁 is the number of SUs. 

𝑃𝑖  is the transmit power of SUs 𝑖. 

ℎii represents the channel improvement between secondary 

 user 𝑖 and itself. 

𝜎2 is the noise power. 

The summation term in the denominator represents 

interference from other SUs. 

 

For the optimized model, we introduce a dynamic power 

allocation algorithm that adjusts transmit power based on real-

time channel conditions and RF energy harvesting. The 

optimization problem remains similar to the existing model, 

but the transmit power is dynamically updated based on 

harvested energy and channel conditions. 

Maximize:∑  𝑁
𝑖=1 log2 (1 +

𝑃𝑖|ℎ𝑖𝑖|
2

𝜎2+∑  𝑁
𝑗=1,𝑗≠𝑖  𝑃𝑗|ℎ𝑖𝑗|

2) (4) 

Subject to: 

0 ≤ 𝑃𝑖 ≤ 𝑃max, ∀𝑖

𝑃𝑖 ≤ 𝐸harvest ,𝑖, ∀𝑖
    (5)  

Where: 

𝐸harvest ,𝑖 is the RF energy harvested by the secondary 

user 𝑖. 

3.3. Energy Detection and Collaborative Spectrum Sensing 

Algorithm with User Authentication 

3.3.1. Energy Detection 

The energy detection algorithm is a fundamental method 

used in CRNs for band detection. It's particularly effective in 

detecting the presence of PUs by analyzing the received signal 

energy levels.  

 

Let's denote the received signal over a certain bandwidth as 

𝑥(𝑡). The energy detection algorithm computes the energy 𝐸 

over a sensing interval [0, 𝑇] as follows: 

𝐸 = ∫  
𝑇

0
|𝑥(𝑡)|2𝑑𝑡    (6a) 

The established energy 𝐸 is then compared against a 

predetermined energy threshold ( 𝑇thresh .If the calculated 

energy surpasses this threshold, the algorithm infers the 

incidence of a PU within the spectrum. 

 

If 𝐸 > 𝑇thresh ,            (6b) 

the algorithm declares that the primary user is present; 

otherwise, it considers the channel to be idle. 

Where:     

𝑥(𝑡): Received signal over a certain bandwidth. 

𝑇 : Sensing interval duration. 

𝑇thresh  : Energy threshold for detection. 
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Fig. 3 System block diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 4 Energy detection and access authentication algorithm flow chart 
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Based on the comparison result, the algorithm decides 

whether the network is busy (i.e., the incidence of PU) or idle 

(i.e., absence of primary user). 

The energy detection algorithm offers a straightforward and 

efficient method for identifying the existence of primary users 

within the spectrum. This enables cognitive radio devices to 

opportunistically utilize vacant spectrum bands without 

posing detrimental interference to primary users. 

 

3.3.2. Authentication and Spectrum Sensing Model 

Let 𝑈 be the set of users, where 𝑈 = { user 1, user 2, user 

3, user 4, user 5}. 
Let 𝑃(𝑈) be the set passwords corresponding to users in 𝑈. 

The authentication model can be represented as a function 

Auth, where: 

 Auth : 𝑈 × 𝑃(𝑈) → { True, False } 

This function checks if the provided username-password 

pair matches the stored credentials in the user database. 

Let 𝑅 be the set of sensing results, where 𝑅 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5}. 
Let 𝑇 be the threshold for spectrum sensing (𝑇 = 0.7). 
The spectrum sensing model involves two main checks: 

i. Detection of primary user signal by at least one user. 

ii. Data integrity checks to ensure sensing results have 

not been compromised. 

These checks can be represented as follows: 

i. Detection of Primary User Signal: 

 Primary User Detected (𝑅) = {
 True  if ∃𝑟𝑖 ∈ 𝑅, 𝑟𝑖 > 𝑇
 False  otherwise 

 

ii. Data Integrity Check: 

 Data Integrity Check (𝑅)

= {
 True  if Hash(𝑅) <  NoiseThreshold 

 False  otherwise 
 

Where Hash(𝑅) is the cryptographic hash of sensing results 

𝑅, and Noise Threshold is the predefined noise threshold. 

4. Results and Discussions  
4.1. Simulation Scenarios 

In this segment, we present the culmination of our 

research efforts and analyses aimed at offering valuable 

insights and interpretations regarding the effectiveness of our 

proposed enhancement model. This section provides a 

thorough overview of the results obtained, accompanied by a 

detailed discussion of their implications, significance, and 

potential applications within the realm of cognitive radio 

networks. Our focus lies in visually depicting the performance 

metrics of the energy efficiency model proposed by Zhang and 

Zhang (2019) in comparison to an optimized version, 

specifically tailored for underlay CRNs with RF energy 

harvesting capabilities. Through simulations conducted across 

a spectrum of SNR values, converted from dB to linear scale, 

we evaluate metrics including throughput, spectral efficiency, 

spectrum utilization efficiency, and the Primary User's (PU) 

QoS Satisfaction Probability. We aim to validate the 

enhancement achieved by the EEEM developed.  

Table 1. Simulation parameters settings 

Related Parameters Typical values 

Number of channels 10 

Number of primary users 3 

Number of secondary users 5 

Channel Bandwidth  10MHz 

Number of iterations  100  

Detection probability  0.9 

Primary user interference threshold 200 

Sensing Threshold 0.7 

Noise Channel AWGN 

SNR (dB)  [0, 2, 4, 6, 8, 10] 

Noise Power (W) 1e-9 

 
4.2. Collaborative Spectrum Sensing with User 

Authentication 

Collaborative spectrum sensing involves multiple users or 

nodes within a network cooperating to sense the occurrence of 

PUs or signals across the spectrum. This collaborative 

approach aims to enhance the accuracy and dependability of 

detecting available bands by leveraging the sensing 

capabilities of multiple nodes. Authentication is integrated 

into collaborative spectrum sensing, where users are required 

to authenticate themselves with a username and password.  

 

User authentication involves verifying users' credentials, 

which are stored in a database, with passwords hashed using 

the SHA256 algorithm for security. The SHA-256 procedure 

is a member of the SHA-2 (Secure Hash Algorithm 2) family, 

known for its cryptological hash function. In Fig. 5, the 

horizontal axis labeled "User" represents individual 

participants engaging in spectrum sensing, numbered from 0 

to 4, corresponding to 'user1' through 'user5'. The vertical axis 

labeled "Sensing Result" depicts the sensing outcomes 

recorded by each user, ranging from 0 to the sensing threshold 

plus 0.2.  

 

The threshold line, marked by a red dashed line, indicates 

the predefined sensing threshold set at 0.7. This threshold 

signifies the level at which a signal is deemed detected during 

spectrum sensing.  

 

The sky blue bars represent the sensing results of each 

user, with the height of each bar indicating the magnitude of 

the sensing outcome. From the visualization, it is evident that 

the detection of at least one primary user has occurred. 

 



Umeudu Francis .T & Omijeh Bourdillon .O  / IJRES, 11(3), 94-102, 2024 

 

100 

 
Fig. 5 Detection of a primary user 

 
4.3. Achievable Rate 

The comparative analysis between the existing model and 

the optimized model, as depicted in Fig.6, provides valuable 

insights into the performance improvement achieved through 

optimization in a communication system with multiple users. 

The achievable rate of the existing model, which represents 

the system's performance without any optimization, is 

compared to the achievable rate of the optimized model, which 

undergoes an optimization process aimed at maximizing data 

transmission efficiency while considering constraints such as 

maximum transmit power and channel conditions. From the 

results, the achievable rate of the existing model is 2.1, and 

that of the optimized model is 2.5; the percentage 

improvement of the optimized model over the existing model 

is calculated to be approximately 16%. This percentage 

improvement quantifies the enhancement in system 

performance achieved through optimization, indicating a 

significant boost in data transmission efficiency and overall 

system effectiveness.  

 

 
Fig. 6 Achievable rates 

4.4. Simulation for various metrics with varying SNR 

 
Fig. 7 Throughput simulation 

Fig.7 shows a direct correlation between achievable data 

rate (Throughput) and received signal quality (SNR), where 

higher SNR values yield significant throughput increases, 

enabling faster and more reliable data transfer. 

 
Fig. 8 Spectral efficiency simulation 

The Spectral Efficiency vs SNR plot complements the 

spectrum utilization efficiency by directly measuring the data 

rate per unit bandwidth. This metric reflects the system's 

ability to transmit information efficiently within the given 

bandwidth. Similar to throughput, spectral efficiency 

demonstrates an increasing trend with higher SNR levels, 

highlighting the improved efficiency of data transmission as 

signal quality improves. This is evident in Figure 8. 

 

The PU's QoS Probability vs SNR plot, shown in Fig. 9, 

reveals a decreasing trend in the probability of satisfactory 

service quality for the Primary User as SNR increases, 

suggesting that higher SNR levels may result in increased 

interference or degradation of the primary user's service 

quality. 
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Fig. 9 PU's QoS satisfaction probability simulation 

 
4.5 Comparative analysis Simulation for the Various 

Performance Metrics 

 

Fig. 10 Validation of EEEM using Throughput Comparison 

 

Starting with the throughput vs SNR plot in Figure 10, it 

can be observed that the optimized model consistently 

outperforms the existing model across all SNR levels.  

 

This improvement is particularly significant at lower 

SNR values, indicating that the optimized model is more 

effective in utilizing available resources to accomplish 

advanced data communication rates in utilizing available 

resources to achieve higher data transmission rates. 

 
Moving to the spectral efficiency vs SNR plot in Fig. 11, 

again, the optimized model demonstrates superior 

performance compared to the existing model.  

 

Spectral efficiency measures the efficiency of data 

transmission over the available bandwidth, and the optimized 

model shows higher spectral efficiency across the entire SNR 

range, indicating better utilization of the bandwidth resources. 

 
Fig. 11 Spectral efficiency 

 
Fig. 12 Validation of EEEM using PU's QoS satisfaction probability 

 
The enhancements observed in the optimized model 

include significant improvements in throughput, spectral 

efficiency, spectrum utilization efficiency, and PU's QoS 

Probability compared to the existing model. These 

improvements indicate that the energy efficiency 

enhancement model (EEEM) effectively optimizes resource 

allocation, leading to enhanced performance and better 

utilization of available resources in underlay CRNs with RF 

energy gathering capabilities. 

 

5. Conclusion  
The Energy Efficiency Enhancement Model (EEEM) 

exhibits notable advancements across diverse performance 

metrics when compared to the current model in the scenario of 

an underlay CRN with RF energy harvesting capabilities. 

Evaluating the percentage enhancement in each metric, the 

enhanced model achieves an average throughput enhancement 

of around 39.91% over the existing model across varying SNR 

levels. This enhancement is substantial, indicating the 

improved model's efficacy in efficiently utilizing resources for 

achieving higher data transmission rates. Regarding spectral 
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efficiency, the enhanced model demonstrates an average 

enhancement of approximately 22.8%, underscoring its 

effectiveness in optimizing data transmission per unit 

bandwidth. Moreover, there is a significant average 

improvement in spectrum utilization efficiency, further 

emphasizing the enhanced model's adeptness in utilizing the 

available spectrum more effectively for data transmission 

purposes. Additionally, the enhanced model exhibits an 

approximately 37.5% improvement in power consumption 

compared to the existing model, based on the provided final 

power consumption values. These percentage enhancements 

underscore the significant improvements brought about by the 

Energy Efficiency Enhancement Model (EEEM) in enhancing 

throughput, spectral efficiency, and spectrum utilization 

efficiency, thereby positioning it as a promising approach for 

augmenting performance in underlay CRNs with RF energy 

harvesting capabilities. 
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