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Abstract - The problem of robust virtual sensor design in linear systems under disturbance is studied. The problem is solved in 

two different ways: in the first way, the linear model insensitive to the disturbance is designed and then used as a virtual sensor; 

in the second one, the model has minimal sensitivity to the disturbance, and the sliding mode observer is constructed. The 

relations allowing to design virtual sensor of minimal dimension estimating given component of the system's state vector are 

obtained. The well-known example of the three-tank system illustrates the theoretical results.  
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1. Introduction  
To solve the problems of control and fault diagnosis, 

modern complex technical systems have different physical 

sensors. Clearly, the more sensors are measured, the simpler 

solution to the problems is obtained. Additional physical 

sensors may result in extra expenses; besides, they are not high 

reliability. Virtual sensors can help in this case. 

 

Many papers are considering different problems in 

designing and applying virtual sensors. Most of these papers 

consider different practical applications of virtual sensors: for 

monitoring automotive engines [1], for active reduction of 

different noises in active control systems [3], for hiding the 

fault from the controller's point of view [9], to construct 

walking legged robots [10], for diagnosis in different systems: 

in aircraft [11], in industrial motors [12], in mixing machine 

[13], in the sensor-cloud platform [17], for a tunnel furnace 

[24]. A new architectural paradigm for remotely deployed 

sensors is presented in [21]. Theoretical aspects of using 

virtual sensors in linear systems are considered in [2, 16]; in 

[23], virtual sensors are used for fault tolerant control in linear 

descriptor systems. The procedure to design virtual sensors for 

systems described by linear models is suggested in [4]. Note 

that virtual sensors in [4] estimate the system state vector and 

are of the whole dimension. 

 

The main contribution of the present paper is that we 

design virtual sensors of minimal dimension for systems 

described by linear models under the disturbance estimating 

prescribed elements of the vector of state invariant with 

respect to or having minimal sensitivity to the disturbance. 

The set of the prescribed components depends on the problem 

of control or fault diagnosis under consideration. In particular, 

the virtual sensor can be used to replace the faulty physical 

sensor in the control system to continue the operation. 

 

The rest of the paper is organized as follows. In Section 

2, the main models are introduced. Section 3 solves the 

problem of the reduced-order model design. In Section 4, a 

Sliding Mode Observer (SMO) is constructed. An example of 

a three-tank system is considered in Section 5. Section 6 

concludes the paper. 

2. Preliminaries  
Consider the system described by the linear dynamic 

model. 
ẋ(t) = Ax(t)+Bu(t)+Dd(t),

y(t) = Cx(t),
(1) 

Where x(t) ∈ Rn, y(t) ∈ Rl, and u(t) ∈ Rm are vectors of 

state, control and output, A, B, C, and D are known constant 

matrices, d(t) ∈ Rp is the disturbance, we assume that d(t) is 

an unknown bounded function of time: ||d(t)|| ≤ d*. 

 

The problem under consideration is as follows: construct 

a virtual sensor of minimal dimension estimating the variable 

z(t) = Mx(t) ∈ R for a given matrix M , invariant with respect 

to the disturbance or having minimal sensitivity to it. To solve 

the problem, one uses the reduced order model of the original 

system, which is invariant with respect to the disturbance or 

has minimal sensitivity to it. Based on this model, the virtual 

sensor estimating the variable z(t) is designed.  

http://www.internationaljournalssrg.org/
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We consider two different kinds of the model: the first 

one estimates the variable z(t), and the second estimates the 

same variable y
*
(t) = R*x(t) for some matrix  R*. The first 

model can be used to design the virtual sensor without 

additional constructions; the second one assumes to construct 

SMO. The second way is more complex than the first, but 

SMO allows finite-time convergence.  

 
The first model invariant with respect to the disturbance 

is described as follows: 

 
ẋ*(t) = A*x*(t)+B*u(t)+J0y

0
(t),

z(t) = Czx*(t)+Qy(t),
(2) 

where x*(t) ∈ Rk, k < n, is the state vector, A*, B*, J0, Cz, 

and Q are matrices that should be determined,  

y
0
(t) = C0x(t) = (

C

M
) x(t) = (

y(t)

z(t)
). 

The second model invariant with respect to the 

disturbance is given by 

ẋ*(t) = A*x*(t)+B*u(t)+J0y
0
(t),

y
*
(t) = C*x*(t).

(3) 

To solve such a problem, the canonical identification 

form of the matrix A* is used. Unlike in this paper, the matrix 

A* is in Jordan's canonical form. 

A* = (

λ1 0 ⋯ 0

0 λ2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ λk

) , (4) 

Where λ1,…,λk are eigenvalues of the matrix A*. This 

allows us to simplify a solution and reduce the dimension of 

the virtual sensor. 

 
If the model invariant for the disturbance cannot be 

constructed, the model with minimal sensitivity to the 

disturbance is designed. In this case, the variable z(t) is 

estimated by SMO based on such a model. 

3. Reduced Order Model Design 
3.1. The Main Relations 

To design both models, introduce the matrix Ψ such that 

x*(t) = Ψx(t). It is known that matrices describing the models 

(2) and (3) satisfy the conditions. 

ΨA = A*Ψ+J0C0, (5) 

B* = ΨB, ΨD = 0 

For the first model, the additional condition appears 

because of the equation z(t) = Mx(t) = Czx*(t)+Qy(t);

 

since 

x*(t) = Ψx(t) and y(t) = Cx(t), it follows: 

M  = CzΨ+QC. (6) 

Rewrite this relation in the form 

M  = CzΨ+QC = (Cz Q) (
Ψ

C
) . (7) 

It is satisfied if and only if 

rank (
Ψ

C
) = rank (

Ψ

C

M

) . (8) 

If it is true, the variable z(t) can be estimated by the 

observer. 

 

For the second model, the additional condition is of the 

form R*C = C*Ψ. Rewrite it in the form  

(R* –C*) (
C

Ψ
)  = 0 (9) 

This equation has a solution if and only if  

rank (
Ψ

C
) < rank(Ψ) + rank(C). (10) 

An additional restriction of insensitivity to the 

disturbance ΨD = 0 can be considered as follows. Let D0 be 

the matrix of maxima rank such that D0D = 0; as a result, 

Ψ = ND0 with some matrix N. In this case, the second equation 

in (5) can be rewritten in the form  

(Ni –J*i) (
D0(A – λiIn)

C
) = 0,        i=1,k (11) 

Where nI  is the identity matrix.  

 

To solve equation (11), one has to choose λi < 0, 

i=1,2,…k, then find from Ψ = ND0 the minimum number of 

rows Ψi = NiD0 satisfying the condition (8), and finally, 

calculating the matrices Cz and Q from (7). Since λi < 0, the 

model is stable and can be used as the virtual sensor.  

 

If condition (8) is not satisfied for all Ψi = NiD0, the first 

model invariant to the disturbance does not exist, and one has 

to design the second model by checking the condition (10). If 

it is satisfied, the matrices R* and C* are found in (9), and the 

second model can be designed.  

 

If (11) has no solutions with λi < 0, one has to use a robust 

method. 
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3.2. Robust Model Design 

The contribution of the disturbance in (2) and (3) is 

estimated by the norm ||ΨD||
F
 of the matrix ΨD. To minimize 

this norm, choose λi < 0 for which (11) with D0 = I is solvable 

and find all solutions in the form Ψi
(1)

, …,Ψi
(N)

. Represent these 

solutions in the form. 

Ψ*i= (
Ψi

(1)

⋮

Ψi
(N)

),     Ji= (
J0i

(1)

⋮

J0i
(N)

). 

To solve the problem, find the singular value 

decomposition of the matrix Ψ*iD: 

Ψ*iD = UDΣDVD, 

where UD and VD are orthogonal matrices,  

ΣD = (diag(σ1,…,σc)  0) or ΣD = (
diag(σ1,…,σc)

0
),  

c = min ( N,kp), 0 ≤ σ1 ≤ … ≤ σc are singular values of 

the matrix Ψ*iD [15]. Choose the first transposed column of 

the matrix UD as a vector w = (w1,…,wN), calculate the 

matrices Ψi = wΨ*i, J0i=wJi, i=1,2,…k, and find the matrices.  

Ψ= (
Ψ1

⋮
Ψk

),     J0= (
J01

⋮
J0k

). 

Then the possibility of estimating the variable z(t) is 

checked based on (8). If it is satisfied, a model with minimal 

sensitivity to the disturbance can be designed. Otherwise, one 

finds another vector w related to the singular value greater than 

σ1. 

 

Theorem 1. The vector w = (w1,…,wN) produces the optimal 

solution with the minimal norm of the matrix ΨD. 

 

Proof. It follows from the properties of singular value 

decomposition [15].  

 

If condition (8) is true with the matrix Ψ for some k, find 

the matrices Hz and Q from (7) and set B* = ΨB, D* = ΨD. As 

a result, the virtual sensor with minimal sensitivity to the 

disturbance estimating the variable z(t) has been designed 

Assume that (8) is not true for all k. In this case, the model 

ẋ*(t) = A*x*(t)+B*u(t)+J*d(t)+ Jzz(t),

y
*
(t) = C*x*(t),

(12) 

where (J*   Jz) = J0 will be used to design a sliding mode 

observer estimating the variable z(t). 

4. Sliding Mode Observer Design 
If Jz ≠ 0, we may begin to design the observer. Otherwise, 

the model (12) should be transformed as follows: 

ẋ*(t) = A*x*(t) + B*u(t) + J*d(t) + Jzz(t) 

        + P0(Czx*(t) + Qy(t) – Czx*(t) – Qy(t)) 

        = A*
' xv(t) + B*u(t) + J*

' y(t) + D0z(t), 

y
*
(t) = C*x*(t), 

where A*
'  = A* – P0Cz, J*

'  = J* – P0Q, the matrix P0 can 

be chosen in the form P0=(0 0 ⋯ 1)
T
. It is assumed 

additionally that z(t) is the bounded function of time and 

||z(t)|| ≤ β for some positive β.  

 

Remark. If Jz ≠ 0, the above transformation is not necessary, 

and we set J*
'  = J* and A*

' =A*. Assume for simplicity that 

Jz ≠ 0. 

 

Different methods to design SMO exist [5-7, 18-20, 25, 

26]. We will use the one suggested in [23]. To implement the 

method [23], assume that k = 1 and A* = –λ1 for some λ1 > 0. 

The model (12) is in the form 

ẋ*(t) = –λ1x*(t) + J*y(t) + B*u(t) + Jzz(t),

y
*
(t) = x*(t),

(13) 

SMO is described by 

ẋ̂*(t) = λ1x̂*(t) + J*y(t) + B*u(t) – k1v(t),

ŷ
*
(t) = x̂*(t),

(14) 

Where v(t)=sign(e(t)), e(t) = ŷ
*
(t) – R*y(t), k1 > 0. 

It follows from (13) and (14) that the estimation error )(te  

is given by 

ė(t) = λ1e(t) – k1v(t) – Jzz(t). (15) 

Because z(t) is bounded function and |v(t)| = 1, then 

|k1v(t) + Jzz(t)| ≤ g
0
 for some g

0
 > 0. It can be shown that e(t) 

is bounded as well and |e(t)| ≤ δ for some δ > 0. 

 

Theorem 2. The function z(t) is estimated by the observer (14) 

as 

ẑ(t) = –Jz
–1k1ve(t). (16) 

Here ve(t) is the signal representing the average behavior 

of v(t). According to [4], one uses as ve(t) the function 

ve(t) = e(t)/(|e(t)| + ε) 

with a small positive scalar ε.  



Alexey Zhirabok et al. / IJRES, 10(2), 1-6, 2023 

 

4 

Proof. One proves that e = 0 in finite time by choice of 

observer gain k1, therefore, sliding motion is achieved. 

Introduce Lyapunov candidate function V(t) = e2(t) and find 

its derivative to time taking into account (15): 

V̇(t)=2e(t)ė(t) = 2e(t)(λ1e(t) – k1v(t) – Jzz(t)). 

Since v(t) = sign(e(t)), then e(t)k1v(t) = k1|e(t)| and 

V̇(t) ≤ 2|e(t)|(λ1δ – k1 – β||Jz||). 

If k1 > λ1δ – k1 – β||Jz||, then V̇(t) < 0, therefore the 

sliding motion is achieved, that is, e(t) = �̇�(t) = 0 in finite time. 

Then it follows from (15) that the fault is estimated by (16).  

 
Note that if measurement noise w(t) ≠ 0 is present in the 

form y(t) = Cx(t) + w(t) and ||w(t)|| ≤ w*, the main result 

remains as before, but the demand for the coefficient k1 

becomes more rigorous. In this case, equation (16) is 

supplemented by the term J*w(t): 

ė(t) = λ1e(t) – k1v(t) – Jzz(t) – J*w(t). 

Then the additional term appears in the derivative V̇(t): 

V̇(t) ≤ 2|e(t)|(λ1δ – k1 + β||Jz|| + w*||J*||); 

formula for 1k  becomes:  

k1 > λ1δ + β||Jz|| + w*||J*||. 

The estimate (16) becomes approximate: 

 

ẑ(t) ≈ –Jz
-1k1ve(t). 

 

Note that due to the singular value decomposition 

contribution of the term D*d(t) in the estimation ẑ(t) is as 

minimal as possible. 

5. Example 
Consider the control system 

ẋ1(t) = u1(t) – b1(x1(t) – x2(t)),       

ẋ2(t) = u2(t) + b1(x1(t) – x2(t)) – b2(x2(t) – x3(t)) + d1(t), 
ẋ3(t) = b2(x2(t) – x3(t)) – b3(x3(t) – ϑ3) + d2(t),  

y
1
(t) = x2(t),   y

2
(t) = x3(t). 

The equations represent a model of the well-known three-

tank system. The system consists of three consecutively united 

tanks. Pipes link the tanks. The liquid flows into the first and 

the second tanks and follows from the third tank through the 

pipe. The levels of liquid in the tanks are x1, x2, and x3, 

respectively. For simplicity, it is assumed that a1 = ... = 

a6 = 1. 

The system is described by the following matrices 

A= (
-1 1 0

1 -2 1

0 1 -2

),   B = (
1 0

0 1

0 0

), 

C = (
0 1 0
0 0 1

),   B = (
0 0

1 0

0 1

), 

The problem is to estimate the variable )(1 tx . Since 

D0 = (1 0 0), equation (11) becomes  

(Ni –J*i) (
–1–λi 1 0

0 1 0

0 0 1

)  = 0 

and has a solution with λ1 = –1: N1 = 1, 

 

J*1 = (1 0), 

Ψ = (1 0 0). The model invariant with respect to the 

disturbance is given by 

ẋ*(t) = –x*(t) + y
1
(t). 

Since this model is stable, it can be used as a virtual 

sensor.  

 

Note that in [28] where the canonical identification form 

of the matrix A* is used, the virtual sensor is 2-dimensional 

and is sensitive to disturbance. The example demonstrates the 

advantage of Jordan's canonical form.  

 

For simulation, consider a three-tank system and the 

observer with the controls u1(t) = 1, t ≥ 1 and u2(t) = 0.5, t ≥ 5; 

d1(t) = –0.3, t ≥ 6; d2(t) = –0.4, t ≥ 10; ε = 0.1. Simulation 

results are shown in Figure. 1, where the functions x1(t) and 
z(t) are presented. 

 

 
Fig. 1 Behavior of the functions x1(t) and z(t) 

6. Conclusion 
In this paper, the problem of virtual sensor design has 

been considered for linear dynamic systems under 



Alexey Zhirabok et al. / IJRES, 10(2), 1-6, 2023 

 

5 

disturbance. The suggested approach enables obtaining a 

virtual sensor of minimal dimension based on the reduced 

order model of the original system invariant to or having 

minimal sensitivity to the disturbance. This allows the 

extension of a class of systems for which virtual sensors can 

be designed. Two kinds of models have been suggested: the 

first model can be used to design the virtual sensor without 

additional constructions, and the second one assumes to 

construct SMO. A sliding mode observer is used to construct 

the virtual sensor. The future research direction is the virtual 

sensor design for hybrid nonlinear dynamic systems. 
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