
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume 1 Issue 6 June 2014

1
www.ijresonline.com

Specification-Based Class Testing – A Case Study
P.Kadambari , Dr.S.Prabu Anand

Assistant professor, Department of Computer Science
Ethiraj College for Women (Autonomous), Chennai

Abstract

Class testing is considered as the sole of the
object-oriented software testing. In class testing we
test each method, test relations among methods and
tests inherit properties between every class and
subclass. In specification-based testing we are mainly
concerned about generating test cases from the
specifications of the class. We never bother about
testing the whole class at a time. It is not easy to
manage the process of testing the class and to unify
the test cases conveniently and consistently. In this
paper, we will work how to give a structure to the test
cases of the methods of a particular class under test.
As per the given class specification, we will define
the test cases and test suites. The paper will help in
drawing the test cases and their further testing. We
are using a new notation Object –Z to draw the
structure and class specification.

1. Introduction

 Software testing means the process of
analyzing a software item to detect the difference
between exiting and required conditions (that is,
bugs) and to evaluate the features of the software
item [1]. Software testing consumes a lot of time and
cost of software development and maintenance. As
the behavior and characteristics of software are
expressed by the specification, so software testing
should be started with a written and modeled
specification. As specification is the reference and
base of the testing, that is why name of specification-
based testing [3].

According to the information gathered there
are two types of software specifications- formal
specifications and informal specification. Formal
specifications are consistent, un-ambiguous and
complete on the bases of mathematical semantics. So
it provides favorable grounds for testing. In the
structural testing field, practitioners have done a lot
of work on formal specification-based testing.
Model-based formal specification testing mainly
based on the principle of partitioning the
specification into equivalent classes and selecting

small data from each class to verify the system
behavior. Few proposed getting predicates from
specification and then using constraint solver
techniques to generate test cases. Some presented a
domain partitioning method, to generate test cases.

The rest of paper is organizes are follows.
Section 2 introduces the methods of class testing.
Section 3 briefly introduces the Object-z
specification language. Section 4 discusses the test
method template in test class framework. Section 5
describes the finite state machine with respect to
class testing. Section 6 introduces the test class
framework in detail. Section 7 gives some
conclusions and related work.

2. Class testing

 The smallest unit for testing in
procedural programs is a function or procedure. In
object-oriented programs, this corresponds to the
class member method. But, in object-oriented
programs, methods are encapsulated in classes. So it
is meaningless and difficult to test each method
independently in object-oriented testing unless the
relations among the methods of a class and their joint
effect on shared states are also tested. So in object-
oriented testing, the smallest unit for testing is a
class.

Binder suggests that the class testing should
include three aspects: testing methods, testing
relation among methods and testing the inheritance
features in a class [3]. The following steps should be
followed for class testing. First, select adequate
criteria for class testing. Second, select adequate
criteria for method testing. Third, in method testing
criteria, use category-partition, boundary analysis and
other testing techniques to produce corresponding
test cases for every method with in a class under test.
Forth, use these test cases to construct test suites
according to the class testing criteria. Fifth, use these
test suites to test the class.

In specification-based testing, the class
testing process means deriving test cases from the
class method specification by the corresponding
testing strategy and coverage analysis. Then class

lalitha
Text Box
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume1 issue3 May to June 2014

lalitha
Text Box
10

International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume 1 Issue 6 June 2014

2
www.ijresonline.com

specification is analyzed to construct the state
transition graph for this class. In last, this state
transition graph and some state-base coverage
analysis techniques are used to generate test suites
from the test cases for each method.

3. Object-Z

 Object-Z [4] is an extension of the formal
specification language Z to accommodate the object
orientation. It helps in conducting individual
operations with one state schema. All the definitions
of state schema with associated operations give the
definition of a class. In Object-Z specification of
system are number of class definitions probably
related by inheritance, a technique for class
adaptation by modification or extension. Object-Z
class syntax is shown below.

• Visibility Lists

Class’s interface is defined in the visibility list.
Visibility list clearly show which features- state
variables, constants, initial state schema and
operations are to be referred to in the environment of
an object of class.

• Inherited Classes

If a class is derived from another class in Object-Z
then its definitions- local definitions, state and initial
state schemas, and operations- are merged with the
parent class.

• Local Definitions

Types and constants which are used in the class are
defined in the local definitions of a class.

• State Schemas

State variables of a class are defined in the state
schema. State schema defines the possible states of
the class.

• Initial State Schemas

Initial state of a class is defined in the initial state
schema.

• Operations

The possible and permissible changes in the state that
an object of the class may gain are defined in the
operations.

Consider the given below Object-Z specification of
the generic class Stack.

Class stack {

int stck[] = new int[50];

int tos;

stack() {tos = - 1;}

void push(int item){

if(tos < 50-2)

stck[++tos] = item;

}

Int pop(){

If (tos>0)

Stct[tos--];

}

}

 The class has a constant size of value 50.
And one state variable p1. The state invariant
stipulates that the size of the stack can not exceed
SIZE. This class can be used further as the basis for
defining the class in incremental order.

4. Test Method Template

 Each method should be tested within class
while testing a class. So method or function testing is
essential and important part of class testing. A test
method template defines an abstract test case for the
method under testing. It defines the constraints of
input variable and the corresponding expected output.
Or the test method template defines test case set and
Object-Z schema is used to represent the test method
template.

4.1 Test Space

 The valid input space (VIS) is defined with
the preconditions of the method. It provides a set of
inputs and state variables for stimulating the
method/function. So Test Space is the source of test
input data for the method. The valid output space
(VOS) for a method is defined with the postcondition
of this method. It provides the constraints of output
and state variables for the method. Therefore, VOS is
the source of expected output for the method. Test
Space (TS) is considered to have VIS and VOS. It
specifies the constraints of entering and exiting a
method. It is the source of test case and can be
divided to produce abstract test case- test method
template (TMT). Thus, test space is also a test
method template. VIS, VOS, TS and TMT can be
defined as given below.

lalitha
Text Box
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume1 issue3 May to June 2014

lalitha
Text Box
11

International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume 1 Issue 6 June 2014

3
www.ijresonline.com

VIS method = pre Method

VOS method = post Method

TS method = VIS method ^ VOS method

TMT method == P TS method

 In this paper, method name is used as
subscript to represent the method under testing. Pre
method and post method denote the precondition and
post condition of the method respectively.

With the test space for each method, the test method
template can be derived through the corresponding
testing strategy.

4.2 Test Method Function

 A strategy identifies a specific technique to
draw test cases. While testing a method we can adopt
many techniques at the same time. We can use
domain testing, boundary value analysis, category
partition and few other techniques those can use the
specifications of the method. STRATEGY defines all
the possible techniques for testing.

 Test method function (TMF) is defined to
manage the method testing process.

TMFmethod:TMTmethodXseqSTRATEGY TMT method

The test cases can be derived with the help of this
function. Test method function, with the help of test
space and test method template specifies the testing
steps. TMF is used to specify the deriving process of
concrete test data. As concrete test data is used as the
instance of some TMT, the instance template (IT) is
defined to represent the type of concrete test data.
The given below formulas give the definition of
instantiating a TMT.

IT method = TMT method

Instantiation: STRATEGY

IT method = TMF method (TMT method,,<instantiation>)

These definitions are applied in the method testing
process for class STACK as follows:

Category partition testing

The category partition testing strategy is used to
partition the test space for the PUSH method in the
STACK class.

Category-partition: STRATEGY

TMT push. 1 = [TS push | # item = 0]

{TMT push.1, TMT push,2 } = TMF push (TS push,
<category-partition>)

Boundary analysis testing

Test method template TMT push, 2 and TS pop are again
partitioned with the help of boundary analysis testing.

| Boundary-analysis: STRATEGY

TMT push 2.1 = [TMT push.2 | #items =1]

{TMTPush.1, TMTPush.2.1, TMTPush.2.2, TMTPush.2.3} =
TMF Push (TS Push, < category-partition, boundary-
analysis>)

TMT Pop.1 = [TS Pop | #items = 1]
{TMT Pop.1, TMTPop.2, TMTPop.3, TMT Pop.4} = TMFPop
(TS Pop, <boundary-analysis>)

4.3 Method testing adequacy

 It is never known in software testing when
to stop testing which is big problem. Method testing
adequacy defined for a tester to decide whether
software has been tested adequately for a specific
testing criterion. Here, structural coverage metrics is
used to measure the thoroughness of a test set.
Statement coverage, branch coverage and condition
coverage are the traditional structural coverage
metrics used to measure how well the bodies of each
method have been tested. Testing adequacy function
(MTAF) is defined as given below:

[CRITERIA] |MTAF method: CRITERIA × TMT method
 TMT method

Here, the type CRITERIA defines a set of all valid
adequacy criteria. The method testing adequacy
function (MTAF) estimates the set of test method
template (TMT) based of some criterion and
produces a set that satisfies this criterion. Branch
coverage criterion is selected for the method push
and pop to estimate the adequacy of the set of above
test method templates. Then, the method testing
adequacy functions of these methods are as follow;

{TMT push.1, TMT push2.1, TMT push2.2, TMT push2.3,} =
MTAF push (branch-coverage, {TMT push.1, TMT
push2.1, TMT push2.2, TMT push2.3,})

lalitha
Text Box
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume1 issue3 May to June 2014

lalitha
Text Box
12

International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume 1 Issue 6 June 2014

4
www.ijresonline.com

{TMT pop.1, TMT pop.2, TMT pop.3, TMT pop.4,} =
MTAF pop (branch-coverage, {TMT pop.1, TMT pop.2,
TMT pop.3, TMT pop.4,})

5. Finite State Machine

 Finite state machine model is widely used or
object-oriented software testing. Interaction of
methods with in a class and the class testing coverage
can be drawn with this model. Finite state machine
have finite and fixe number of states and input
symbols. It consists of states, transitions, inputs and
outputs. This section develops a finite state machine
from the information of an Object-Z class
specification.

5.1 State

 The states of a class are represented with the
values of state variables in Object-Z specification.
State variables are defined in the state schema within
the class. The INIT schema within a class states the
initial state of the class. The methods in the class
state the transitions from one state to another. So, a
method is linked with to states – source state and
target state. Method transforms source state into
target state through some operation. So, source state
is specified in the precondition of a method and target
state is specified in the post condition of a method.

 The test method templates (TMT) are
derived from the precondition and post condition of
each method of each method. TMT provide a
partition of the source and target states. Hence, the
states in finite state machine (FSM) of a class can be
derived from the INIT schema within class and final
test method templates. Steps to derive state in a finite
state machine are shown below:

• INIT schema within the class represents the
initial state of the class.

• Extract the precondition from each final test
method template and hide the input variables
in the precondition to represent the source
state of some transition.

• Extract the post condition from each final
test method template and hide the
input/output variables in this post condition
to represent the target state of some
transition.

• Define each state using an Object-Z schema
named state template (ST).

For stack class, the states of a FSM derived from
the final TMT and INIT schema.

ST INIT = [items: seqT |items = <>]

ST push.1.source = [items: seqT |items = 0]

ST pop.4.source = [items seqT | #items = max]

ST pop.4.target = [items seqT | #items = max-1]

 Few are equivalent states in the above states,
which can be shown with one state.

State Equivalent states

ST INIT STPush.1.shouce,STpop.1.target

ST Push.1.1taget STPush.2.1.shouce,STpop.1.source,

ST pop.2.target

ST Push.2.1taget STpop.2.source

STpush.2.2source ST pop.3.target

ST Push.2.2.taget STpop.3.source

STpush.2.3source ST pop.4.target

ST Push.2.3.taget STpop.4.source

Hence, states in the FSM of stack class are ST INIT,
STPush.1.1taget, ST Push.2.1taget, STpush.2.2source, ST Push.2.2.taget,
STpush.2.3source, ST Push.2.3.taget.

Once the states of a FSM are derived, it is
important to find out whether the states are disjoint.
If not, any overlap of states must be resolved. To
achieve this, the given below canonical disjunctive
normal from (DNF) to construct a partition of state.

A v B = (A ^ B) or (¬A ^ B) or (A ^ ¬B)

With the help of this rule, we resolve the overlap in
the above states can produce following disjoint states.

ST0 = ST INIT

ST1 = ST Push.1.1taget

ST5 = ST Push.2.3.taget

lalitha
Text Box
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume1 issue3 May to June 2014

lalitha
Text Box
13

International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume 1 Issue 6 June 2014

5
www.ijresonline.com

5.2 Transition

 Transition means switching from one state
to another in between two valid pair of states in FSM.

The steps of transitions in finite state machine shown
below:

• Select a pair of states in FSM.

• Analyze the final test method template. If
there exists a template that makes the source
state in the state pair satisfy its precondition
and the target state in the state pair satisfy its
post condition, this test method template is
used to label the transition of the state pair.

• Repeat above two steps until all valid
transitions are labeled.

 6. Test Class

 Test class is the abstract representation of
test suite. The interaction between the methods
within a class is tested with the help of test class. A
test class is represented with an Object-Z class. It has
the test methods templates and INIT schema of the
class under testing. The class testing adequacy
criteria is concerned to construct a test suite.

 Here, the state path coverage is used to build
test suite. It refers to state tree, translated from the
finite state machine. Leaf nodes show leaf states in
the tree. Leaf state represents no further transition
possible from this state. Test suites should cover
each transition path, from initial state to leaf state.

6.1 Constructing State Tree

 The initial state is transformed into root in
the state tree. Transform each transition into an edge
in the state tree. For one state, if there is no transition
originates from it or it has been existed in the state
tree, this state is labeled as a leaf state. Repeat step 2,
3 until all leaf states are labeled.

Searching this tress using depth first techniques, we
gained given below paths. Each path is shown with a
sequence.

Path1 = <INIT>

Path2 = <TMT push.1, TMT pop.1>

Path6 =< TMT push.1, TMT push2.1, TMT push.2.2,
TMTpush.2.3, TMTpush.2.4, TMTpop.4>

6.2 Constructing test class

 A test class is represented as an Object-Z
class. It states a test suite of the class under testing.
The steps for constructing test classes of a class under
testing are shown below:

• For each traverse (depth first) of the state
tree of the class under testing following
steps should be taken to construct a test
class.

• TC class notation is used to represent class
under test. The subscript should be followed
with a number representing the sequence
number of test suite.

• State schema of the class under testing is
used as the state schema of a test class.

• The INIT schema of the class under testing
is used as the INIT schema of a test class.

• The functions of a test class are composed of
all test method templates in the depth-first
traversing path.

• Define a constant in the local definition of a
test class representing the sequence of
executing the test method templates in a
depth-first traversing path.

Following above shown steps the test classes
of the stack class are shown below. The
given type TMT represents the set of all test
method templates for stack class.[TMT]

TCstack.1

Max: N

Testseq : seqTMT

Testseq = <INIT>

Items : seq T

#items < max

INIT

Items = <>

TCstack.2

Max: N

Testseq : seqTMT

Testseq=<TMTpush.1,
TMT pop.1>

Items : seq T

#items < max

INIT

Items = <>

TMTpush.1, TMT pop.1

lalitha
Text Box
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume1 issue3 May to June 2014

lalitha
Text Box
14

International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume 1 Issue 6 June 2014

6
www.ijresonline.com

TCstack.3

Max: N

Testseq : seqTMT

Testseq= TMTpush.1,
TMTpush.2.1,TMTpop.2>

Items : seq T

#items < max

INIT

Items = <>

TMTpush.1,
TMTpush.2.1,TMTpop.2

TCstack.6

Max: N

Testseq : seqTMT

Testseq= TMTpush.1,
TMTpush.2.1to2.3
TMTpop.4>

Items : seq T

#items < max

INIT

Items = <>

TMTpush.1, TMTpush.2.1,
TMTpush.2.2,
TMTpush.2.3,TMTpop.4

Testing method of stack class is shown in
detail in above test classes. These test class are

showing the sequence of testing method with in the
class and represent the information of test suits
formally.

7. Conclusions

 The case study has shown a class testing
process. We used test method template, test method
function, method testing adequacy function, and test
class. In future our work will focus on the application
of this technique on large classes.

References

[1] IEEE Std. 829-1998.

[2] Boris Beizer. Software Testing Techniques, Van
Nostrand Reinhold, New York, 2nd ed., 1990.

[3] Robert V. Binder: Testing Object-Oriented
System: Models, Patterns and tools. Addison Wesley
Longman, Inc. 2000.

[4] Grame Smith, The Object-Z Specification
Language, Kluwer Academic Publishers, 2000,
America.

lalitha
Text Box
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume1 issue3 May to June 2014

lalitha
Text Box
15

