
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume4 April 2014

1
www.ijresonline.com

Version Specific Test Suite Prioritization using Dataflow Testing

M.Kalaiyarasan, Dr.H.Yasminroja
Research scholar, Assistant Professor,

Department of Computer Science and Engineering,
JJ College of Engineering and Technology, Trichy, India

Abstract

Test case prioritization optimizes the ordering of test
cases to be executed to meet some criteria like maximum
code coverage or rate of fault detection. While
maintenance, regression testing is performed on the
modified code to build confidence in the code and to
ensure that modification has not introduced any new
errors. One approach while regression testing is to retest
all the test cases which were used while development
testing. This exhaustive approach is usually non optimal
as the modification may or may not affect the whole code
and it is expensive approach. Regression test case
prioritization techniques find a subset of prioritized test
cases from the test suite used while development testing
so that software testers may test the modified code
effectively and efficiently and yet in an inexpensive
manner. While maintenance different versions of software
may be created depending on the type of modification and
test cases may be prioritized according to the version of
the software. Here in this paper four different categories
of software modifications have been identified and
regression test suite prioritizations according to the
versions thus created have been suggested using dataflow
information.

1. Introduction

Software maintenance is the most expensive phase of
software development. Regression testing being an
important activity performed during maintenance phase
can account for a large proportion of software
maintenance budget, and it can be very expensive [5].
Regression test Suite Prioritization attempts to reorder the
execution of test suite, so that those tests with the highest
priority according to some established criterion are
executed earlier in the regression testing process than
those with lower priority [4, 8].

While maintenance modifications are performed on the
software in order to incorporate new features. These
modifications may be of different categories, and may
create different versions of the software. Depending upon
the type of modification the test case effectiveness to
detect faults may vary. So, we are interested in test cases

that perform well enough to detect faults in a specified
version of the software. As test suite may vary for
different versions of the software the test cases have to be
prioritized according to the versions.

In this paper, we have discussed the use of data flow
testing to determine the priority of regression test suite for
different version of software created while maintenance.
Although there may be variety of modifications, we have
considered four broad categories of modifications for our
discussion. Code snippets along with their flow graphs
have been employed to depict the category of
modifications and an analysis for prioritizing test cases
using data flow testing has been discussed in section 4 of
this paper. Section 2 covers data flow testing and some
useful definitions. Section 3 discusses background and
related work. Section 5 summarizes the concepts
presented in this paper. Section 6 presents conclusion and
future work.

2. Literature survey

This section discusses the data flow testing concepts,
anomalies and related definitions. Data flow testing is a
structural testing approach and is basically a verification
technique which uses the source code to guide the
selection of test data . In dataflow testing we look for the
use of variables and we focus on

i. Statements where variables receive values

ii. Statements where these values are used or
referenced [1]

Flow graphs are used as a basis for dataflow testing as in
the case of path testing. Variables used in the program
may be defined and referenced throughout the program.
We may have few define/referenced anomalies [1].

i. A variable is defined but not used.
ii. A variable is used but never defined.

iii. A variable is defined twice before it is used.

lalitha
Text Box
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume1 issue2 March to April 2014

lalitha
Text Box
13

International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume4 April 2014

2
www.ijresonline.com

2.1. Definitions

We consider a program P with a flow graph F, and a set
of program variables V.

i. DEF (v, n) : A node n of flow graph F where the
variable v ɛ V is defined.

ii. USE (v, n) : A node n of flow graph F where the
variable v ɛ V is used.

a. denoted P if n is a predicate statement
b. denoted C if n is a computational

statement.
iii. DU Path (definition use): A path in a flow graph

F where at the initial node n of the path a
variable v ɛ V is defined and at the final node m
of the path the variable v ɛ V is used/referenced.

iv. DC Path (definition clear): A DU path of the
flow graph F in which no node between the
initial node n and final node m of the path is a
DEF (v, n) for the considered variable v ɛ V.

Dataflow testing approach provides a set of DU paths for
which test cases have to be generated. There may be some
DU paths which are not DC paths and for such paths test
cases must be written specifically.

3. Background and related work

Various techniques for regression test suite prioritization
have been proposed in research literature by several
researchers. These techniques have addressed test case
prioritization according to rate of fault detection or code
coverage capabilities. Many prioritization techniques
have been described in the research literature, and they
have been evaluated through various empirical studies [3,
7, 9, 12, 13, 14, and 15].

Rummel, Kapf hammer, and Andrew Thall. (Rummel et
al. 2005) suggest that test suite can be prioritized
according to all DU’s with minimal time and space
overhead. Huchins et al (Huchins et al 1994) showed that
both control flow and data flow testing can be very useful
at instigating the generation of high yield test cases that
may be otherwise omitted. Frankl et al. (Frankl et al
1997) suggest that mutation based criteria is better than
all DU criteria when desirable code coverage level is
high. Jones et al (Jones and Harold, 2001) describe a
technique for prioritization of test cases for use with the
modified condition /decision coverage (MCDC) criteria.
Srivastava and Thiagarajan (Srivastava and Thiagarajan,
2002) present a technique based on basic block coverage
using both feedback and change information. Rothermel
et al. (Rothermel et al, 1999, 2001) and Elbaum et al.
(Elbaum et al, 2001b, 2002) were the first to provide

formal definition of prioritization problem and present
metric for measuring the rate of fault detection of test
suite.
Among the papers mentioned above only few (Rothermel
et al, 1999, 2001; Elbaum et al, 2001b, 2002) report
results of studies or experiments explicitly accessing the
ability of prioritization techniques to improve rate of fault
detection relative to each other or unpriortized test cases.

4. Version specific prioritization approach

While maintenance various activities are performed on
the code like simple modifications, adding new
functionalities, removing some old functionalities etc.
Thus different versions of the software may be created
depending upon the type of modification. Dataflow
testing can play a vital role in determining the definition
and use of new and old variables after modifications in
the code. New DU paths may emerge after modification
and these paths need to be tested specifically to ensure
that no new faults have crept in the code.

Here in this paper, we are interested in prioritizing the
regression test suite according to the version of the code
created while maintenance using dataflow information. In
this work we identify four broad categories of
modifications for our discussion and we describe test case
prioritization approach using dataflow information.

4.1. Category 1

Table 1: Code Snippet
1. Start
2. Read x, y
3. If y >0 then goto 6 //modification
4. z := y
5. goto 7
6. z :=y + x
7. Stop

Figure 1: Flow Graph for Category 1 modification

lalitha
Text Box
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume1 issue2 March to April 2014

lalitha
Text Box
14

International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume4 April 2014

3
www.ijresonline.com

In this category 1, we consider the type of modification in
which small changes are done in any line of the code,
let’s say line 3 of the Table 1. Then it will affect the use
of variable y which in turn will affect the computation of
variable z.

We recommend that all DU paths which relate to variable
y must be tested to ensure that the modification has not
introduced any new error. Accordingly, we can say that
test cases related to variable y must be assigned highest
priority.

4.2. Category 2

Table 2: Code Snippet
1. Start
2. Read x, y
3. If y >=0 then goto 8
4. z := y
5. if z >0 then goto 7 // new code fragment added
6. x := x + y
7. x := x – y
8. z := y + x
9. Stop

Figure 2: Flow Graph for Category 2 modification

In this category it may happen that a new code fragment
is added to the original code while maintenance. This can
introduce new DU associations which may not be DC
paths. In the above solve code snippet new code fragment
has been added in line number 5 through 7. This
modification could have redefined the variable y which
can be reason to a potential fault. We can say that for
category 2 we have to identify newly introduced DU
paths due to the modifications. We must ensure that these
new introduced DU paths are DC paths. These new paths
must be tested well and we recommend that test cases

which execute these new DU paths must be given highest
priority while regression testing.

4.3. Category 3

Table 3: Code Snippet
1. Start
2. Read x, y
3. If y >=0 then goto 8
4. z := y
5. goto 7
6. z := y + x
7. Read m, n //new feature added
8. If m > 0 then goto 10
9. n := -m
10. n := m
11. if n < 0 then goto 7
12. Stop

Figure 3: Flow Graph for Category 3 modification

In this category we have considered the case when
modification introduces an entirely new feature to the
existing code. It may be the case that this new feature
does not uses variables or computed variables from the
old code, i.e. the newly added feature functions entirely
on its own. For this category we have to identify all DU
paths and generate new test cases related to these DU
paths. We can assign equal priority to both of the test
cases, i.e. that of the original code and that of the added
module. We can say that we have to generate new test
cases for the added feature and both the test cases (new
and old) should be given equal importance while testing.

lalitha
Text Box
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume1 issue2 March to April 2014

lalitha
Text Box
15

International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume4 April 2014

4
www.ijresonline.com

4.3. Category 4

Table 4: Code Snippet
1. Start
2. Read x, y
3. If y >=0 then goto 8
4. z := y
5. goto 7
6. z := y + x
7. Read m, n //new feature added
8. If m > 0 then goto 10
9. n := m + z
10. n := m - z
11. if n < 0 then goto 7
12. Stop

Figure 4: Flow Graph for Category 4 modification

If the new feature added uses some variables (computed
or defined) from one of the old features of the software
then it must be ensured that the variable referenced in
the new feature has a consistent value. As shown in the
above given code snippet and its related flow graph the
computed variable z from the old feature is referenced
(line 9 and 10) in the newly added feature. Before z is
used its value must be consistent, to ensure this the old
features Du paths regarding variable y must be tested well
enough. As variable z could have been redefined in the
new function, a new DU association could have been
introduced. We can say that test cases related to such new
DU paths, and test cases related to the DU path of old
features variables (used in computation of the referenced
variables in new feature) must be assigned highest

priority so as to improve fault detection efficiency of the
regression test suite.

5. Discussion on the criteria

Version specific test case prioritization ensures that test
cases are executed according to the version of the
software. It may be the case that for any new version
almost all prioritized test cases may be new. As we have
proposed in our approach different categories of
modifications may demand different prioritization
approach’s for the test cases. In the first category where
small modification is done in any line of code, the
definition and may be the use, of variables on that line
may be affected ,which in turn may affect the computed
variables . Accordingly all DU paths related to the
modified variables must be tested well, and test cases
related to those DU paths must be assigned highest
priority while testing. For category two where new code
fragment is added, new DU paths may be introduced, and
test cases related to these paths must be assigned the
highest priority while testing. For category three and four
where an entire new feature is added , it may be the case
that the new feature has no interactions with old features
(category three) ,then we may assert new test cases for the
newly added features must be assigned equal priority to
the test cases of old features while testing . If the added
feature define or uses, variables or computed variables
from the old feature new DU associations may be
introduced. So test cases for the newly introduced DU
paths must be assigned highest priority.

6. Conclusion and future work

In this paper, we have described a version specific test
case prioritizing scheme using data flow information.
Though our approach does not take into consideration the
code coverage capabilities of the possible test cases, it
surely considers the fault detection capabilities of the
possible test cases as we have emphasized on the testing
of newly introduced DU paths which may be reason for
faults. This paper introduces a theoretical foundation for
which proper experimentation, analysis and further study
is required.

First, we intend to perform experiments regarding this
approach to determine its effectiveness, in terms of fault
detection or in terms of code coverage. Second, we will
compare the experimental results with some existing
work regarding test case prioritization, to check for its
efficiency and cost effectiveness.

lalitha
Text Box
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume1 issue2 March to April 2014

lalitha
Text Box
16

International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume4 April 2014

5
www.ijresonline.com

References

1. K.K. Aggarwal & Yogesh Singh, “Software Engineering”,

New Age International Publishers, Third Edition-2008.
2. Matthew J. Rummel Gregory M. Kapfhammer, Andrew

Thall. Towards the Prioritization of Regression Test Suites
with Data Flow Information 2005 ACM Symposium on
Applied Computing.

3. H. Do, G. Rothermel, and A. Kinneer. Empirical studies of
test case prioritization in a JUnit testing environment. In
Proc. Int’l. Symp. Softw. Rel. Engr., pages 113–124, Nov.
2004.

4. Sebastian Elbaum, Alexey G.Malishevsky, and G.
Rothermel. Prioritizing test cases for regression testing. In
Proceedings of the International Symposium on Software
Testing and Analysis, pages 102-112. ACM Press, August
2000.

5. A.J.Offutt, J.Pan, K.Tewary, and T.Zhang. An
experimental evaluation of data flow and mutation testing.
Softw. Pract. and Exp., 26(2):165–176, Feb. 1996.

6. Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas
Ostrand. Experiments of the effectiveness of dataflow- and
controflow-based test adequacy criteria. In Proceedings of
the 16th International Conference on Software
Engineering, pages 191{200. IEEE Computer Society
Press, 1994.

7. S. Elbaum, D. Gable, and G. Rothermel. Understanding
and measuring the sources of variation in the prioritization
of regression test suites. In Proc. Int’l. Softw. Metrics
Symp., pages 169–179, Apr. 2001a.

8. G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test
case prioritization: An empirical study. In Proceedings of
the International Conference on Software Maintenance,
pages 179-188, August 1999.

9. S.Elbaum, A.Malishevsky, and G. Rothermel.
Incorporating varying test costs and fault severities into test
case prioritization. In Proc. Int’l. Conf. Softw. Eng., pages
329–338, May 2001b.

10. Phyllis G. Frankl, Stewart N. Weiss, and Cang Hu. All-
uses vs mutation testing: an experimental comparison of
effectiveness. J. Syst. Softw., 38(3):235-253, 1997.

11. J. Jones and M. Harrold. Test-suite reduction and
prioritization for modi¯ed condition/decision coverage. In
Proceedings of the International Conference on Software
Maintenance, Nov. 2001.

12. A. Srivastava and J. Thiagarajan, “Effectively Prioritizing
Tests in Development Environment,” Proc. Int’l Symp.
Software Testing and Analysis, pp. 97-106, July 2002.

13. S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test
case prioritization: A family of empirical studies. IEEE
Trans. Softw. Eng., 28(2):159–182, Feb. 2002.

14. G. Rothermel, R. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. IEEE Trans.
Softw. Eng., 27(10):929–948, Oct. 2001.

15. W.Wong, J. Horgan, S. London, and H. Agrawal. A study
of effective regression testing in practice. In Proc. Int’l.
Symp. Softw. Rel. Engr., pages 230–238, Nov. 1997.

lalitha
Text Box
International Journal of Recent Engineering Science (IJRES),
ISSN: 2349-7157, volume1 issue2 March to April 2014

lalitha
Text Box
17

