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ABSTRACT
        This project report discusses about the design and implementation of an incremental 
system for clustering the data stream that are present in time series databases. The Online 
Divisive-Agglomerative Clustering system implemented in this project work 
continuously maintains a tree-like hierarchy of clusters that evolves with data, using a 
top-down strategy. Using correlation-based dissimilarity measure, each node is split by 
the farthest pair of streams. This system uses a merge operator which re-aggregates a 
previously split node, in order to react to changes in the correlation structure between 
time series. The split and merge operators act in response to changes in the diameters of 
existing clusters. Expanding the structure in this way leads to a decrease in the diameters 
of the clusters. This system has been designed to process thousands of data streams that 
flow at high rate. The main advantage of this system is the reduction in update time and 
memory usage. This system has been implemented using Java language in Windows 
platform.
 INTRODUCTION
In recent days, techniques for storing information are becoming important as the web 
spread out, with constant increase in communication capabilities, creating a global 
network interaction of both data and processes. The traditional setting for data analysis 
had turned gathering data into one of the most difficult tasks in data mining applications. 
In fact, not rarely the amount of data available from a given source (e.g. sensor networks) 
is so high that traditional batch systems, which are usually based on memory storage and 
multiple readings of the same data, simply cannot be used. In recent real-world 
applications, data flows continuously from a data stream at high speed, producing 
examples over time. Traditional models cannot adapt to the high speed arrival of new 
examples (Rodrigues et al 2008). This way, new algorithms have been developed that 
aim to process data in real- time. These algorithms should be capable of processing each 
example in constant time and memory, while they consistently supply a compact data 
description at each given moment. In this context, quicker responses are usually 
requested. Hence it is necessary to continuously maintain a decision model at any time, 
which should reflect the behavior of most recent data.
Time series data is perhaps the most common kind of data explored by data miners. 
Clustering is probably the most frequently used data mining algorithm, used in 
exploratory data analysis. Data clustering techniques that work in real-time discovery 
must allow the update of the clustering definition based only on the current model and on 
new examples.
As data set have grown in size and complexity, there has been a shift away from direct 
hands-on data analysis toward indirect, automatic data analysis using more complex and 
sophisticated tools. Major improvements in computer technology have aided data 
collection. However, the captured data needs to be converted into information and 
knowledge to become useful. Data mining is the entire process of applying computer-
based methodology, including new techniques for  knowledge discovery to data.
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Data mining identifies trends within data that go beyond simple analysis. Through the use 
of sophisticated algorithms, non-statistician users have the opportunity to identify key 
attributes of business processes and target opportunities. However, abdicating control of 
this process from the statistician to the machine may result in false-positives or no useful 
results at all. Although data mining is a relatively new term, the technology is not. For 
many years, businesses have used powerful computers to sift through volumes of data 
such as supermarket scanner data to produce market research reports (although reporting 
is not always considered to be data mining). Continuous innovations in computer 
processing power, disk storage, and statistical software are dramatically increasing the 
accuracy and usefulness of data analysis. 

Clustering Algorithm
The algorithm that has been used in this work is Online Divisive Agglomerative 
Clustering. In this system, the Online Divisive-Agglomerative Clustering that constructs 
a hierarchical tree-shaped structure of clusters using a top-down strategy. The clustering 
technique is used to grow the tree and controlling the growth and also taking care of its 
splitting and aggregation. These processes are done and the tree is constructed.
The Clustering algorithm is controlled by the database manager and finally a hierarchical 
tree is obtained. Thus using these components the decision process is made effective 
using the algorithms and thus a hierarchical tree structure is constructed.
 HIERARCHICAL APPROACH
In this system, the Online Divisive-Agglomerative Clustering which is an algorithm for 
incremental clustering of streaming time series that constructs a hierarchical tree-shaped 
structure of clusters using a top-down strategy. The leaves are the resulting clusters, with 
each leaf grouping a set of variables. The union of all leaves is the complete set of 
variables. The intersection of any two leaves is the empty set. The system encloses an 
incremental distance measure and executes procedures for expansion and aggregation of 
the tree-based structure, based on the diameters of the clusters. The main assumption of 
the system is that decisions taken over a sample of the most recent data are, in the limit 
and under certain conditions, equivalent to those taken over an infinite set of 
observations. Given this, the system continuously monitors existing clusters’ diameters 
over time. The diameter of a cluster is the maximum distance between variables of that 
cluster. For each existing cluster, the system finds the two variables defining the diameter 
of that cluster. 
At time t, if a given condition is met on this diameter, the system splits the cluster and 
assigns each of the chosen variables to one of the new clusters, becoming the pivot 
variable for that cluster. Afterwards, all remaining variables on the old cluster are 
assigned to the new cluster which has the closest pivot. New leaves start new statistics, 
assuming that only forthcoming information will be useful to decide whether or not this 
cluster should be split. This feature increases the system’s ability to cope with changing 
concepts as; later on a test is performed to check if the previously decided split still 
represents the structure of variables. On stationary data streams, the overall intra-cluster 
dissimilarity should decrease with each split. This way, if a cluster is split into two child-
leaves, the diameter of the new clusters should be less or equal than the diameter of the 
parent node. If the diameter of a leaf is greater than its parent’s diameter, then the 
previously taken decision no longer reflects the structure of data. The system 
reaggregates on the cluster’s parent, restarting statistics. 
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The algorithm that has been used in this work is Online Divisive Agglomerative Clustering. In this system, the Online Divisive-Agglomerative Clustering that constructs a hierarchical tree-shaped structure of clusters using a top-down strategy. The clustering technique is used to grow the tree and controlling the growth and also taking care of its splitting and aggregation. These processes are done and the tree is constructed. The Clustering algorithm is controlled by the database manager and finally a hierarchical tree is obtained. Thus using these components the decision process is made effective using the algorithms and thus a hierarchical tree structure is constructed. 

HIERARCHICAL APPROACH
In this system, the Online Divisive-Agglomerative Clustering which is an algorithm for incremental clustering of streaming time series that constructs a hierarchical tree-shaped structure of clusters using a top-down strategy. The leaves are the resulting clusters, with each leaf grouping a set of variables. The union of all leaves is the complete set of variables. The intersection of any two leaves is the empty set. The system encloses an incremental distance measure and executes procedures for expansion and aggregation of the tree-based structure, based on the diameters of the clusters. The main assumption of the system is that decisions taken over a sample of the most recent data are, in the limit and under certain conditions, equivalent to those taken over an infinite set of observations. Given this, the system continuously monitors existing clusters' diameters over time. The diameter of a cluster is the maximum distance between variables of that cluster. For each existing cluster, the system finds the two variables defining the diameter of that cluster.

At time t, if a given condition is met on this diameter, the system splits the cluster and assigns each of the chosen variables to one of the new clusters, becoming the pivot variable for that cluster. Afterwards, all remaining variables on the old cluster are assigned to the new cluster which has the closest pivot. New leaves start new statistics, assuming that only forthcoming information will be useful to decide whether or not this cluster should be split. This feature increases the system's ability to cope with changing concepts as; later on a test is performed to check if the previously decided split still represents the structure of variables. On stationary data streams, the overall intra-cluster dissimilarity should decrease with each split. This way, if a cluster is split into two child leaves, the diameter of the new clusters should be less or equal than the diameter of the parent node. If the diameter of a leaf is greater than its parent's diameter, then the previously taken decision no longer reflects the structure of data. The system re-aggregates on the cluster's parent, restarting statistics.


user
Text Box
International Journal of Recent Engineering Science (IJRES), 
ISSN: 2349-7157, volume1issue1 Jan to Feb 2014

user
Text Box
18
www.ijresonline.com



INCREMENTAL DISSIMILARITY MEASURES
The system must analyze distances between incomplete vectors, without having any of 
the previous values available. Thus, these distances must be incrementally computed. 
Since the decisions has to be taken with statistical support, we use the Hoeffding bound 
to support our decisions, forcing the criterion the distance measure to be scaled.
Let  be independent random variables. Assume that the Xi are almost bounded; that is, 
assume for that

Then, for the sum of these variables

we have the inequality

which is valid for positive values of t (where E[S] is the expected value of S).
The Pearson’s correlation coefficient between time series as similarity measure, as done 
by deriving from the correlation between two time series a and b calculated in, the factors 
used to compute the correlation can be updated incrementally, achieving an exact 
incremental expression for the correlation,
Corr(a,b) = (P-(AB/n))/ (√ ((A2-(A2/n))*√((B2-(B2/n))))

The sufficient statistics needed to compute the correlation are sufficient statistics easily 
updated at each time step: A = summation of (ai), B = summation of (bi), A2 =summation 
of(ai2), B2= summation of(bi2),  P = summation of (ai bi). In ODAC, the dissimilarity 
between variables a and b is measured by an appropriate metric, the Rooted Normalized 
One Minus Correlation, given by rnomc(a, b) = ((1 - corr(a,b))/2)2 with range [0, 1]. The 
cluster’s diameter is to be the highest dissimilarity between two time series belonging to 
the same cluster, or the variable variance in the case of clusters with single variables.
 GROWING & CONTROLLING THE HIERARCHY
 Growing the Hierarchy
The main procedure of the ODAC system is to grow a tree shaped structure that 
represents the hierarchy of the clusters present in the data. The system incrementally 
updates, at each new example arrival, the sufficient statistics needed to compute the 
dissimilarity matrix, enabling its application to clustering data streams. The dissimilarity 
matrix for each leaf is only computed when it is being tested for splitting or aggregation, 
after receiving a minimum number of examples. When processing a new example, only 
the leaves are updated, avoiding computation of unneeded dissimilarities; this speeds up 
the process every time the structure grows. This is how the tree structure is grown.
Resolving Ties
There might emerge a case where the two top-most distances are nearly or completely 
equal. To distinguish the cases where the cluster has many variables nearly equidistant 
from the cases where there are two or more highly dissimilar variables, a tweak must be 
done.  This application of the system to a data stream with high dimension, possibly with 
hundreds or thousands of variables, we turn to a heuristic approach. 
The system is let to check for the real diameter until we force the splitting and 
aggregation tests, assuming the leaf has been fed with enough examples, hence it should 
consider the highest distance to be the real diameter.
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 Controlling the Growth
 The hierarchy may grow unnecessarily, in order to control and avoid such a situation; we 
define another criterion that has to be fulfilled to perform the splitting. The splitting 
criterion should reflect some relation among the distances between variables of the 
cluster. Given this fact, we can impose a cluster to be split if it includes a high difference 
between the two variables.

The splitting of leaf into a node with two child-leaves if the following condition is met:
(d1 - d0) |d1 + d0 - 2d| > ek 
This expression gives the global positioning of the mean with respect to the range of the 
existing distances, representing two inherent concepts: the farther the highest distance is 
from the minimum distance, the higher is the possibility of a split occurrence; also, the 
farther the mean distance is from the average of the maximum and minimum distances 
((d1 + d0)/2), the higher is the probability of splitting.

 MEMORY AND TIME COMPLEXITY
The ODAC system presents the required features of an adaptive learning system. For 
each leaf in which the diameter is known (with confidence level given by the Hoeffding 
bound) the system tests for aggregation first, so in case of concept drift it will not start to 
grow unnecessarily. This algorithm presents the method of  merging the splitting with the 
aggregative procedure. 

 Algorithm ODAC
Input: A set of streaming time series X =(x1, x2, ..., xn)
Output: A hierarchical clustering structure S with leaves (clusters) L = (l1, l2, ..., lm)

1: Repeat
2: Read new example Xt and update sufficient statistics on the leaves L
3: For each leaf lk not yet tested do
4: Update dissimilarities and the Hoeffding bound ek for this leaf
5: if TestAggregate (lk) or TestSplit (lk) then
6: announce new structure S;
7: end if
8: end for
9: until EOF

Complexity analysis can be done with respect to memory usage and time consumption.
A system which aims at efficiently clustering data streams must comply with constant 
memory usage. In ODAC, the size needed to keep the sufficient statistics at each node 
with n variables is O(n2). Let us consider splitting this node into two new leaves, with n1 
and n2 streams, where n=n1+n2. Considering that (n1+n2)2 > n12+n22 although the space 
used by children nodes is still O(n12+n22).
A system which aims at efficiently clustering data streams must also comply with 
constant execution time, with respect to the number of examples. When updating the 
system with a new example, the update of sufficient statistics results in O(n2) operations. 
This is, as expected, quadratic in the number of variables. The update does not depend on 
the number of examples seen. Therefore, the system’s update time is constant in respect 
to the number of examples, satisfying the data stream requirements. The splitting 
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procedure (algorithm 1) needs to compute the two maximum, the minimum and the mean 
of the dissimilarity matrix. This procedure is linear in the number of distances, hence O
(n2), quadratic with the number of variables. When computing dissimilarities, assuming 
the worst case scenario where only one leaf exists, the number of dissimilarities 
computed is also O(n2), thus quadratic with respect to the number of variables. An 
important feature of this algorithm is that every time a split is performed on a worst case 
scenario and at most (n/2)2 (best case scenario). As a result, the time complexity of each  
iteration of the system is constant with respect to the number of examples, and decreases 
with every split; it is therefore capable of addressing continuous data streams.
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From these figures, it is observed that ODAC takes less time and consumes less memory 
in comparison with the K-means clustering algorithm.

CONCLUSIONS AND FUTURE WORK
This Online Divisive Agglomerative Clustering is designed towards thousands of data 
streams that flow at high-rate (Pedroso Rodrigues et al (2008)). Two main characteristics 
are update time and memory consumption. Both reduce whenever the tree structure 
grows. This is a major achievement accomplished by ODAC since only dissimilarities at 
the leaves must be computed. This way, every time the system grows it becomes faster, 
overcoming the bottleneck of having to compute all dissimilarities at root level, which is 
known to have quadratic complexity on the number of streams. In phase1 of this project 
work ODAC algorithm has been implemented and tested.
Further works in this direction could be the design and implementation of a temporal 
database with suitable indexes and with more historical information. In phase2 of this 
project work, a new clustering algorithm will be proposed and implemented. 
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