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Abstract 

The exact calculation, LLR (Log-Likelihood 

Ratio) or APP (A Posteriori Probability) of the QAM 

(Quadrature Amplitude Modulation) demapping 

involves complicated operations. Several algorithms 

have been introduced to simplify the calculation of the 

LLR, such as a pragmatic algorithm, Max-Log-MAP 

algorithm. In this work, we apply the Max-Log-MAP 

algorithm for binary LDPC codes. Simulation results 

show that the LDPC codes using the Max-Log-MAP 

algorithm for 16-QAM and 64-QAM constellations can 

achieve a good performance of binary LDPC codes with 

a simple calculation over Gaussian and Rayleigh 

channels. 
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I. INTRODUCTION 

High-order constellations can achieve 

enhanced high-speed transmission without increasing 

bandwidth [1]. For this reason, Quadrature Amplitude 

Modulation (QAM), which has been adopted by various 

communication standards, is strongly recommended as a 

high order constellation. However, communication 

systems using the MAQ require a high signal-to-noise 

ratio. So it is advantageous to combine with the MAQ 

efficient error-correcting codes [2,3], such as LDPC 

codes. LDPC codes [4,5] are error-correcting codes and 

can approach the Shannon limit for large data blocks 

[6]. They are block codes with parity-check matrices H 

that contain only a minimal number of non-zero entries. 

This sparseness of H is essential for an iterative 

decoding complexity that increases only linearly with 

the code length. The LDPC codes can be described by a 

graphical representation called Tanner graph [7], which 

corresponds to the matrix H.  

Tanner graph is a bipartite graph composed of 

two types of nodes: the variable nodes representing the 

symbols of the codeword and the parity nodes 

representing the parity control equations. Branches 

connect these two types of nodes according to the non-

zero elements in the parity check matrix. Each node 

generates and propagates messages to its neighbours 

based on its current incoming messages except the input 

message on the branches where the output message sent.  

LDPC codes are decoded iteratively using a 

graphical representation of their parity-check matrix. 

The first iterative decoding algorithm of the LDPC 

codes is the Sum-Product Algorithm (SPA) [4,5], also 

known as the belief propagation algorithm, which is an 

optimal iterative decoding algorithm but with high 

computational complexity. Several algorithms have 

been proposed to reduce the complexity of the SPA [8].  

The LDPC decoder must operate on soft 

decisions calculated using: LLR (Log-Likelihood Ratio) 

or APP (A Posteriori Probability) according to the type 

of decoding algorithm used. The exact calculation of 

these decisions for higher-order constellations involves 

complicated operations. Several algorithms have been 

introduced to simplify the calculation of the LLR for the 

binary codes, such as the pragmatic algorithm [9], The 

max-log-MAP (Maximum A Posteriori) algorithm [10], 

and the simplified max-log-MAP [11]. The pragmatic 

algorithm is studied for binary and non-binary LDPC 

codes, respectively, in [20] and [13]. In this work, we 

use the algorithm max log-MAP to simplify the LLR 

calculation for binary LDPC codes.  

The rest of the paper is organized as follows. 

Section 2 introduces the LDPC decoding: SPA that was 

used in the simulation. In Sections 3 and 4, the exact 

LLR computation and the Max-Log-MAP algorithm are 

investigated, respectively. Finally, the simulation results 

and concluding remarks are given in Sections 4 and 5, 

respectively. 

II. LDPC DECODING: SUM-PRODUCT 

ALGORITHM 

In the following, the SPA is described. 

➢ Sum-Product algorithm  

The SPA performs the following operations [14]: 

▪ Initialization of variable nodes 
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▪ A posteriori information 
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▪ Decision 

�̂�𝑛 = {
0       𝑠𝑖�̃�𝑛 > 0 
1       𝑠𝑖�̃�𝑛 < 0

                                      (5) 

Finally, the algorithm stops if the maximum 

number of iterations is reached or if the syndrome is 

zero. 

III. EXACT LLR COMPUTATION 

22𝑚-QAM transmit, at each time,  22𝑚 binary 

symbols. Each set of 2m binary symbols is associated 

with a symbol 𝑐 = 𝑎 + 𝑗𝑏, where 𝑎 𝑎𝑛𝑑 𝑏 ∈
{±1, ±3, ±5, … ,2𝑚 ± 1}. After passing through the 

transmission channel, the observation relating to the 

symbol c is represented by the symbols 𝑐′ = 𝑎′ + 𝑗𝑏′. At 

the reception, 22𝑚-QAM-Gray demapping treat each 

symbols c' representative of the symbols c to extract 2m 

samples {�̂�𝑛,𝑖}, 𝑖 ∈ {1, … , 2𝑚} each representative of a 

binary symbol 𝑢𝑛,𝑖. The sample �̂�𝑛,𝑖, the soft output 

demapping, is obtained using two relationships, 

𝐿𝐿𝑅(𝑢𝑛,𝑖) (Log-Likelihood Ratio) or 𝐴𝑃𝑃(𝑢𝑛,𝑖) (A 

Posteriori Probability). In this work, one used LLR 

computation. 𝐿𝐿𝑅(𝑢𝑛,𝑖), 𝑖 ∈ {1, … , 𝑚}, is calculated as 

follows [15]: 

𝐿𝐿𝑅(𝑢𝑛,𝑖) = 𝑙𝑜𝑔 [
𝑃𝑟{(𝑎𝑛

′ ,𝑏𝑛
′ ) 𝑢𝑛,𝑖=1⁄ }

𝑃𝑟{(𝑎𝑛
′ ,𝑏𝑛

′ ) 𝑢𝑛,𝑖=0⁄ }
]           (6) 

Where 𝑃𝑟{(𝑎𝑛
′ , 𝑏𝑛

′ ) 𝑢𝑛,𝑖 = 𝑤⁄ } is the 

probability that the available couple is (𝑎𝑛
′ , 𝑏𝑛

′ ); 

knowing the binary symbol 𝑢𝑛,𝑖 is equal to w. 

For a square constellation 𝑚 = 2𝑝, 22p-QAM 

has the particularity to be reduced to two amplitude 

modulations with 2P states independently acting on two 

carriers in-phase and quadrature [11]. According to this 

property (the case of a square constellation): 

➢ The p expressions in  phase are consequently the 

following: 

𝐿𝐿𝑅(𝑢𝑛,𝑖) = 𝑙𝑜𝑔 [
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With 𝑎𝑖,𝑗
𝑘  are possible values of the symbol 𝑎𝑛 

when the symbol 𝑢𝑛,𝑖 to be transmitted has the value k 

(k = 0 or 1); 𝑤 = 0 𝑜𝑟 1; 

➢ The p relations in quadrature eventually lead to 

the following expressions: 

𝐿𝐿𝑅(𝑢𝑛,𝑖) = 𝑙𝑜𝑔 [
∑ 𝑒𝑥𝑝{−

1

2𝜎2(𝑏𝑛
′ −𝛼𝑛𝑏𝑖,𝑗
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2

}2𝑝−1
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1
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2
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] 𝑖 ∈

{𝑝 + 1, … , 2𝑝}(8) 

With 𝑏𝑖,𝑗
𝑘  are possible values of the symbol 𝑏𝑛 

when the symbol 𝑢𝑛,𝑖 to be transmitted has the value k 

(k = 0 or 1). 

Equations (7) and (8) are the exact calculation 

of the LLR; it is the optimal calculation that represents 

the log-MAP algorithm [16-18]. However, it involves 

several operations. Several algorithms have been 

introduced to simplify the exact calculation of the LLR. 

In this work, we use two simplified algorithms: a max-

log-MAP algorithm and a simplified max-log-MAP 

algorithm. 

IV. SIMPLIFIEDLLR COMPUTATION (MAX-

LOG-MAPALGORITHM) 

The exact calculation of the LLR involves 

several operations. Several algorithms have been 

introduced to simplify the exact calculation of the LLR. 

In this work, we use the max-log-MAP algorithms. The 

LLR is simplified as follows [21]: 

 

𝐿𝐿𝑅(𝑢𝑛,𝑖) =
max

𝑗∈{1,…,2𝑝−1}
𝑒𝑥𝑝(

1

2𝜎2(𝑎𝑛
′ −𝛼𝑛𝑎𝑖,𝑗

0 ))
2

max
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𝑒𝑥𝑝(
1
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1 ))
2, (9) 

      

Where 𝑖 ∈ {1, … , 𝑝} 

And 

𝐿𝐿𝑅(𝑢𝑛,𝑖) =
max

𝑗∈{1,…,2𝑝−1}
𝑒𝑥𝑝(

1

2𝜎2(𝑏𝑛
′ −𝛼𝑛𝑏𝑖,𝑗

0 ))
2

max
𝑗∈{1,…,2𝑝−1}

𝑒𝑥𝑝(
1

2𝜎2(𝑏𝑛
′ −𝛼𝑛𝑏𝑖,𝑗

1 ))
2,   (10) 

 

Where  𝑖 ∈ {𝑝 + 1, … ,2 𝑝} 

V. SIMULATION RESULTS 

In this section, we present the effect of the LLR 

simplified calculation on the performance of a binary 

LDPC code, with a code rate of 1/2 and a parity check 

matrix of size 512 × 1024, and for a decoding algorithm 

using the LLR at its input: the SPA algorithm. The 
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LDPC code is associated with two square constellations: 

16-QAM and 64-QAM and the associated Gray 

mapping, and Gaussian and Rayleigh channels.  

Figures 1 and 2 show respectively for 16-QAM 

and 64-QAM, performance comparisons, on a Gaussian 

channel, between an LDPC code using the exact 

calculation of the LLR and an LDPC code the 

simplified calculation by applying the max-log-MAP 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Performance comparisons, under Gaussian 

channel, of (512, 1024) LDPC code using exact LLR 

computation and its simplified calculation using Max-

Log-MAP algorithm, for 16-QAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Performance comparisons, under Gaussian 

channel, of (512, 1024) LDPC code using exact LLR 

computation and its simplified calculation using Max-

Log-MAP algorithm, for 64-QAM 

In figures 1 and 2, we can see that the LDPC 

code using the simplified LLR computations has a 

minimal performance loss for 16-QAM. For 64-QAM, 

there is no performance degradation. The same 

performance comparison obtained on a Gaussian 

channel is performed on a Rayleigh channel for 16-

QAM (figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Performance comparisons, under Rayleigh 

channel, of (512, 1024) LDPC code using exact LLR 

computation and its simplified calculation using Max-

Log-MAP algorithm, for 16-QAM 

In figures 3, we can see that the LDPC code 

using the simplified LLR computations has a minimal 

performance loss. As a result, the simplification of LLR 

calculation using the Max-Log-MAP algorithm can 

achieve a good performance of binary LDPC codes with 

a simple calculation. 

VI. CONCLUSION 

In this work, we have used for binary LDPC 

codes the simplified calculation of the LLR using the 

Max-Log-MAP algorithm. Simulation results show that 

the LDPC codes have a good performance with a simple 

calculation of LLR. 
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