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Abstract 
Combining LDPC codes with high order 

constellations is an effective way to improve bandwidth 

efficiency. Since the LDPC codes require soft decisions 

regarding the input information, the constellation has to 

provide soft information (log-likelihood ratio) to it. In 

this paper, a simplified algorithm, called Simplified 

Max-Log-MAP algorithm, to calculate LLR is applied 

for binary LDPC codes, which remarkably reduce the 

computational complexity, and has nearly no 

performance loss. 
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I. INTRODUCTION 

High-order constellations can achieve 

enhanced high-speed transmission without increasing 

bandwidth [1]. For this reason, Quadrature Amplitude 

Modulation (QAM), which has been adopted by various 

communication standards, is strongly recommended as a 

high order constellation. However, communication 

systems using the MAQ require a high signal-to-noise 

ratio. Hence, it is advantageous to combine with the 

MAQ efficient error-correcting codes [2, 3], such as 

LDPC codes. 

LDPC codes [4, 5], are error-correcting codes, 

have a capability approaching the Shannon limit for 

large data blocks [6]. They are block codes with parity-

check matrices H that contain only a minimal number of 

non-zero entries. This sparseness of H is essential for an 

iterative decoding complexity that increases only 

linearly with the code length. LDPC codes are decoded 

iteratively using a graphical representation of their 

parity-check matrix. 

The first iterative decoding algorithm of the 

LDPC codes is the Sum-Product Algorithm (SPA) [4,5], 

also known as the belief propagation algorithm, which 

is an optimal iterative decoding algorithm, but with high 

computational complexity. Several algorithms have 

been proposed to reduce the complexity of the SPA [7].  

The LDPC decoder must operate on soft 

decisions calculated using: LLR (Log-Likelihood Ratio) 

or APP (A Posteriori Probability) according to the type 

of decoding algorithm used. The exact calculation of 

these decisions for higher-order constellations involves 

complicated operations. Several algorithms have been 

introduced to simplify the analysis of the LLR for the 

binary codes such as the pragmatic algorithm [8], the 

max-log-MAP (Maximum A Posteriori) algorithm [9], 

and the simplified max-log-MAP [10]. The pragmatic 

algorithm is studied for binary and non-binary LDPC 

codes, respectively, in [11] and [12]. In this work, we 

use the algorithms max-log-MAP and simplified max-

log-MAP to simplify the LLR calculation for binary 

LDPC codes. 

The rest of the paper is organized as follows. 

Section 2 introduces the LDPC code and the SPA that 

used in the simulation. In Sections3 and 4, the exact 

calculations of LLR and Simplified Max-Log-MAP for 

QAM constellation under the Gaussian channel are 

investigated, respectively. Finally, the simulation results 

and concluding remarks are given in Sections4 and 5, 

respectively. 

II. LDPC CODING AND DECODING 

LDPC codes are linear block codes based on 

low-density parity-check matrices H, i.e., the number of 

non-zero elements in the matrix is much less than the 

number of zeros. The LDPC codes can be described by 

a graphical representation called Tanner graph [13], 

which corresponds to the matrix H.  

Tanner graph is a bipartite graph composed of 

two types of nodes: the variable nodes𝑣𝑛, 𝑛𝜖{1, … , 𝑁}, 

representing the symbols of the codeword and the parity 

nodes nodes 𝑐𝑚, 𝑚𝜖{1, … , 𝑀}, representing the parity 

control equations. Branches connect these two types of 

nodes according to the non-zero elements in the parity 

check matrix. Each node generates and propagates 

messages to its neighbours based on its current 

incoming messages except the input message on the 

branch where the output message sent. 

The parity check matrix H allowed us to 

determine the Tanner graph, which is used as a support 

for the decoder. Also, this matrix is used for the LDPC 

encoder. In the following, the SPA is described. 
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➢ Sum-Product algorithm  

The SPA performs the following operations [14]: 

▪ Initialization of variable nodes 

𝜇𝑚𝑛 = 𝑙𝑜𝑔
𝑃𝑟(𝑣𝑛=1|𝑐𝑛

′ )

𝑃𝑟(𝑣𝑛=0|𝑐𝑛
′ )

, 𝑚𝜖{1, … , 𝑀},𝑛𝜖{1, … , 𝑁}(1) 

- Iteration  

▪ Parity check nodes computation 
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▪ A posteriori information 
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▪ Decision 

�̂�𝑛 = {
0       𝑠𝑖�̃�𝑛 > 0 
1       𝑠𝑖�̃�𝑛 < 0

                                      (5) 

Finally, the algorithm stops if the maximum 

number of iterations is reached or if the syndrome is 

zero. 

III. EXACT LLR COMPUTATION 

22𝑚-QAM transmit, at each time,  22𝑚 binary 

symbols. Each set of 2m binary symbols is associated 

with a symbol 

𝑐 = 𝑎 + 𝑗𝑏,where𝑎𝑛𝑑 𝑏 ∈
{±1, ±3, ±5, … ,2𝑚 ± 1}. After passing through the 

transmission channel, the observation relating to the 

symbol c is represented by the symbols 𝑐′ = 𝑎′ + 𝑗𝑏′. At 

the reception, 22𝑚-QAM-Gray demapping treat each 

symbols c' representative of the symbols c to extract 2m 

samples {�̂�𝑛,𝑖}, 𝑖 ∈ {1, … , 2𝑚} each representative of a 

binary symbol 𝑢𝑛,𝑖. The sample �̂�𝑛,𝑖, the soft output 

demapping, is obtained using two relationships, 

𝐿𝐿𝑅(𝑢𝑛,𝑖) (Log-Likelihood Ratio) or 𝐴𝑃𝑃(𝑢𝑛,𝑖) (A 

Posteriori Probability). In this work, one used LLR 

computation. 𝐿𝐿𝑅(𝑢𝑛,𝑖), 𝑖 ∈ {1, … , 𝑚}, is calculated as 

follows [15]: 

𝐿𝐿𝑅(𝑢𝑛,𝑖) = 𝑙𝑜𝑔 [
𝑃𝑟{(𝑎𝑛

′ ,𝑏𝑛
′ ) 𝑢𝑛,𝑖=1⁄ }

𝑃𝑟{(𝑎𝑛
′ ,𝑏𝑛

′ ) 𝑢𝑛,𝑖=0⁄ }
]                   (6) 

Where 𝑃𝑟{(𝑎𝑛
′ , 𝑏𝑛

′ ) 𝑢𝑛,𝑖 = 𝑤⁄ } is the 

probability that the available couple is (𝑎𝑛
′ , 𝑏𝑛

′ ); 

knowing the binary symbol 𝑢𝑛,𝑖 is equal to w. 

For a square constellation 𝑚 = 2𝑝, 22p-QAM 

has the particularity to be reduced to two amplitude 

modulations with 2P states independently acting on two 

carriers in-phase and quadrature [11]. According to this 

property (the case of a square constellation): 

➢ The p expressions in  phase are consequently the 

following: 

𝐿𝐿𝑅(𝑢𝑛,𝑖) = 𝑙𝑜𝑔 [
∑ 𝑒𝑥𝑝{−

1

2𝜎2(𝑎𝑛
′ −𝑎𝑖,𝑗

0 )
2

}2𝑝−1

𝑗=1

∑ 𝑒𝑥𝑝{−
1

2𝜎2(𝑎𝑛
′ −𝑎𝑖,𝑗

1 )
2

}2𝑝−1
𝑗=1

] 𝑖 ∈ {1, … , 𝑝}(7) 

With 𝑎𝑖,𝑗
𝑘  are possible values of the symbol 𝑎𝑛 

when the symbol 𝑢𝑛,𝑖 to be transmitted has the value k 

(k = 0 or 1); 𝑤 = 0 𝑜𝑟 1; 

➢ The p relations in quadrature eventually lead to 

the following expressions: 

𝐿𝐿𝑅(𝑢𝑛,𝑖) = 𝑙𝑜𝑔 [
∑ 𝑒𝑥𝑝{−

1

2𝜎2(𝑏𝑛
′ −𝛼𝑛𝑏𝑖,𝑗

0 )
2

}2𝑝−1

𝑗=1

∑ 𝑒𝑥𝑝{−
1

2𝜎2(𝑏𝑛
′ −𝛼𝑛𝑏𝑖,𝑗

1 )
2

}2𝑝−1
𝑗=1

] 𝑖 ∈ {𝑝 + 1, … , 2𝑝}(8) 

With 𝑏𝑖,𝑗
𝑘  are possible values of the symbol 𝑏𝑛 

when the symbol 𝑢𝑛,𝑖 to be transmitted has the value k 

(k = 0 or 1). 

Equations (7) and (8) are the exact calculation 

of the LLR; it is the optimal calculation that represents 

the log-MAP algorithm [16-18]. However, it involves 

several operations. Several algorithms have been 

introduced to simplify the exact analysis of the LLR. In 

this work, we use two simplified algorithms: a max-log-

MAP algorithm and a simplified max-log-MAP 

algorithm. 

IV. SIMPLIFIEDLLR COMPUTATION 

(SIMPLIFIED MAX-LOG-MAPALGORITHM) 

Using the simplified Max-Log-MAP algorithm, 

The LLR is simplified as follows [9]: 

 

𝐿𝐿𝑅(𝑢𝑛,𝑖) =
( min

𝑗∈{1,…,2𝑝−1}
(𝑎𝑛

′ −𝑎𝑖,𝑗
0 ))

2

−( min
𝑗∈{1,…,2𝑝−1}

(𝑎𝑛
′ −𝑎𝑖,𝑗

1 ))

2

2𝜎2
,  (9)   

    

Where 𝑖 ∈ {1, … , 𝑝} 

And 

𝐿𝐿𝑅(𝑢𝑛,𝑖) =
( min

𝑗∈{1,…,2𝑝−1}
(𝑏𝑛

′ −𝑏𝑖,𝑗
0 ))

2

−( min
𝑗∈{1,…,2𝑝−1}

(𝑏−𝑏𝑖,𝑗
1 ))

2

2𝜎2
,     (10) 

 

Where  𝑖 ∈ {𝑝 + 1, … ,2 𝑝} 

V. SIMULATION RESULTS 

In this section, we present the effect of the LLR 

simplified calculation on the performance of a binary 

LDPC code, with a code rate of 1/2 and a parity check 

matrix of size 512 × 1024, and for a decoding algorithm 

using the LLR at its input: the SPA algorithm. The 

LDPC code is associated with two square constellations: 

16-QAM and 64-QAM and the associated Gray coding, 

and a Gaussian channel. 

    Figures 1 and 2 show respectively for 16-

QAM and 64-QAM, performance comparisons, on a 

Gaussian channel, between an LDPC code using the 
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exact calculation of the LLR and an LDPC code the 

simplified analysis by applying the simplified max-log-

MAP algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figures 1 and 2, we can see that the LDPC 

code using the simplified LLR computations has a 

minimal performance loss for 16-QAM. For 64-QAM, 

there is no performance degradation. As a result, the 

simplification of LLR calculation can achieve good 

performance with a simple analysis. 

VI. CONCLUSION 

In this work, we have used binary LDPC codes 

to simplify the LLR using the simplified Max-Log-

MAP algorithm. Simulation results show that the 

simplified max-log MAP algorithm is suitable for 

binary LDPC codes. 
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Fig. 1. Performance comparisons, under Gaussian 

channel, of (512, 1024) LDPC code using exact LLR 

computation and  its simplified calculation  using 

Simplified Max-Log-MAP algorithm, for 16-QAM 

Fig. 2. Performance comparisons, under Gaussian 

channel, of (512, 1024) LDPC code using exact LLR 

computation and its simplified calculation using 

Simplified Max-Log-MAP algorithm, for 64-QAM 
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