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Abstract 

In this paper, we propose a UDFO 

non-monotone wedge trust region algorithm with 

modified self-correcting geometry. This method can 

be projected to substantially decrease the need of 

geometry improving steps by exploiting a 

self-correcting property of the interpolation set 

geometry, and the design of this algorithm depends 

on a self-correction mechanism resulting from the 

combination of the non-monotone wedge trust-region 

framework with the polynomial interpolation setting. 

The global convergence of this algorithm is proved 

under some mild conditions. 
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I. INTRODUCTION 

  We consider the unconstrained optimization 

problem:  

 m in ( ) , ,
n

f x x RÎ   (1) 

Where f  is a nonlinear function from 
n

R  into 

R . We first recall the general trust-region framework 

where derivatives of f  are available before turning 

to the derivative-free case. At each iteration of an 

iterative trust-region method, a model of the form 

                       

1
( s ) ( ) g

2

T T

k k k k k
m x f x s s H s                        

(2) 

(Where 
k

g  and 
k

H  are the function’s gradient 

and Hessian) is minimized inside the following trust 

region  

 ( , )
n

k k k k
B x x R x x

 
                         

(3) 

Where 


 denotes the infinity norm.  

  In our derivative-free context, the model (2) is 

determined by the interpolation set 
k

Y , and the set 

k
Y  of interpolation points must satisfy the conditions 

( ) ( )
k

m y f y  for all 
k

y Y . This 

derivative-free methods date back to the algorithm of 

Winfield [1, 2], which is one of the pioneering works 

in trust region methods. Excellent reviews on trust 

region algorithms for optimization without 

derivatives are given in [3, 4] and [5]. In order to 

keep the interpolation set from becoming degenerate, 

many methods use explicit “geometry-improving” 

steps, and then Scheinberg and Toint [6] exploited a 

self-correcting property of the interpolation set 

geometry with the trust region algorithm. Marazzi 

and Nocedal [7] proposed another strategy in which a 

“wedge constraint” is imposed to the trust region 

sub-problem so that the geometry of the interpolation 

set will not be destroyed after the trial point is 

included into the set. Considering the effectiveness of 

non-monotone strategy when coping with the 

problems, Zhang [8] proposed a new non-monotone 

method for trust-region algorithm. In this paper, we 
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presented a hybrid algorithm which combined a 

non-monotone wedge trust region method and 

self-correcting geometry technique.   

The paper is organized as follows. In section 

2 we recommend some preliminaries about 

interpolation schemes, and introduced the wedge and 

non-monotone strategies in detail. We design the new 

non-monotone wedge trust-region algorithm with 

self-correcting geometry strategy fanaily. In section 3, 

we prove the global convergence of our algorithm. In 

section 4, we make some conclusions. 

 

II. A UDFO NON-MONOTONE 

TRUST-REGION ALGORITHM WITH 

SELF-CORRECTING GEOMETRY 

A. The Interpolation Models  

Recently, many researchers proposed some 

different techniques to construct the interpolation 

model [9, 10, 11]. In the following, let us describe the 

definition and lemmas of the interpolation model 

minutely. Consider 
d

n
p , the space of polynomials of 

degree d in 
n

R , and let 
1

1p p   be the 

dimension of the space. 

 Definition 2.1.[12, 13] Given a set of interpolation 

 
0 1
, , ,

p n
Y y y y R  , a basis of 

1
1p p   

polynomials         ( )(j 0 , , p ) p
d

j n
xl                              

(4) 

is called a basis of Lagrange polynomials if 

                           

1, i j ,
(y )

0 , .

i

j ij
l

i j



  



                            

(5) 

  If Y  is poised, then Lagrange polynomials exist 

and are unique. Moreover, they have a lot of useful 

properties. Particularly, we are interested in the 

crucial fact that, if ( )m x  interpolates ( )f x  at the 

points in Y , then for all x , 

 
0

( ) (y ) ( ).

p

j

j

j

m f lx x



    (6) 

It can also be shown that 
0

1 .( ) ,

p

n

j

j

x x Rl



    

Lemma 2.1.[14, 15] Given the sphere 

 
2

( , )

d ef

n
B x n v R v x n      , a poised 

set ( , )Y B x n   and its associated basis of 

Lagrange polynomials  
1

( )
p

i i
l x


, there exists 

constants 0
e f

k   and 0
e g

k   such that, for any 

interpolation polynomial (x )m  of degree one or 

higher of the form (6) and any point 

( , )y B x n  , one has  

2

2
0

(y ) m (y ) (y )

p

i

e f i

i

f k y y l



    and 

2
(y) m (y) ,

eg
f k                (7) 

where 
2

1, , ( , )

m a x m a x (y) .
i

i p y x n

l
  

 


  

Lemma 2.2. For any given 1   , a closed ball 

B, and a fixed polynomial basis  , algorithm 2.1 

terminates with a  -poised set  Y  after a finite 

number of iterations where the number of steps 

depends on   and  . 

B. Non-Monotone Technology 

Currently, non-monotone technique has been 

studied by many scholars [8, 16, 17, 18]). Toint 

pointed out that the non-monotone technique can 

enhance the possibility of finding a global 

optimization. And it can improve the rate of 

convergence in cases where a monotone scheme is 

forced to creep along the bottom of a narrow curved 

valley. In this paper, we can use the ratio [8] 
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where 

(

1 1

)
1 1 1

( ) , 0 ,

, 1,

1, 0 ,
    

1, 1,

k

Q C f xk k k k k

Q
k

k

k k

k
Q

f x k

C
k Q k






  

 







 
 




 

                     (9) 

 m in
0,1  ,  m ax m in

,1   and 

 1 m in m ax
 , ,

k
  


  are two given constants. 

C. Wedge Trust Region Method. 

The wedge trust region method was 

proposed by Marazzi and Nocedal [7]. The wedge 

constraint is added to the trust region sub-problem, 

and we have 

                               

m in ( s)
k

s
k

m x                          (10) 

. .
k

s t s                               (11) 

 

k
s W ,                               (12) 

Where 
k

W  is a set which contains the “taboo 

region” area, and the purpose is to avoid the new 

point falling into it. As for solving the wedge trust 

region sub-problem (10)-(12), we usually first solve 

the standard trust region sub-problem without the 

wedge constraint and get a solution 
e

k
s  at the k-th 

iteration. If 
e

k
s  satisfies the wedge constraint, we set 

e

k k
s s  as the trail step. Otherwise, the wedge 

constraint is active. By rotating 
k

s , we find a vector 

satisfying the wedge constraint. Then we set the trail 

point 
k k k

x x s

  . One point must be mentioned is 

that there is a measure to make sure the sufficient 

descent of the model function in the rotating process, 

i.e.,  

   
1

( ) ( ) ( ) ( s )
2

   
e

k k k k k k k k k
m x m x m x m x


    
 

                     (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

Algorithm 2.1 UDFO non-monotone trust 

region algorithm with self-correcting geometry 

Step 0: initialization.    

An initial trust-region radius 
0

 , initial accuracy 

threshold 
0

  are given. An initial poised 

interpolation set 
0

Y  that contains the starting point 

0
x  is known. An interpolation model 

0
m  around 

0
x  and associates Lagrange polynomial  0 ,

1

p

j
j

l


 

are computed. Constants 
1

 , 

 0,1 ,
sw itch

 

 1 2
(0,1), 0 1, 0,1 , 0, 1, 0, 1               

,
m a x

1p n   are also given. Choose 
00

xv   

Where 
i

v  is variable introduced to keep track if the 

model at 
k

x  is known to be well poised. Set 0k  

and 0i . 

Step 1: criticality test. 

Step 1a: define 
ki

mm ˆ . 

Step 1b: if 
ikix

xm  )(ˆ , set )(ˆ
1 kxi

xm


 , 

compute a  -poised model 
1

ˆ
i

m  in ),(
1ik

xB   

and increment i  by one. If  )(ˆ
kix

xm , then 

return 
k

x , otherwise start step 1b again. 

Step 1c: set )(,ˆ
kkxkik

xmmm    and define 

ki
xv   (what indicates that the model at 

k
x  is well 

poised and steps 4b and 4c need not to be visited in 

an unsuccessful iterate) if a new model has been 

computed. 

Step 2: compute a trial point.  

Solve the wedge trust region sub-problem (10) for 
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getting 
k

s , so the trial point 
kkk

sxx 
 .           

Step 3: evaluate the objective function at the trial 

point. 

Compute )(


k
xf  and 

k
  from (8). 

Step 4: define the next iterate. 

Step 4a: Augment interpolation set (
m a xk

p p ). If 

m a xk
p p , then: define  1k k k

Y Y x



  . 

If
1k

  , then define 
1k k

x x



  and choose 

1k k
   . If 

1k
  , define 

1k k
x x


  and if 

k s w itc h
   , set  1 1 2

,
k k k

 


    , otherwise 

1k k
   . 

Step 4b: Successful iteration. If 1k
   and 

m a xk
p p , define 






kk
xx

1
, choose 

kk


1
 

and define    1 ,
\

k k k k
Y Y x y






  , where   is 

the index j  of any point 
,k j

y  in 
k

Y , for instance, 

such that 2

, ,
a rg m a x ( )

j k j k k j k
y x l x

 



  . 

Step 4c: replace a far interpolation point. If 
1k

  , 

m a xk
p p , either 

k i
x   or 

k i
  , and the 

set 

 , ,

d e t

,
           ( ) 0

k j k k k j kk k j k
su ch th a t y x a ny dF lY x


   

 is non-empty, set 

1k k
x x


 ,  1 1 2

,
k k k

 


     and define 

   1 ,
\

k k k k
Y Y x y






   where   is the index 

j  of any point 
,k j

y  in 
k

F , for instance, such that 

2

, ,
a rg m a x ( )

j k j k k j k
y x l x

 



  . 

Step 4d: replace a close interpolation point. If 

1k
  ,

m a xk
p p , either 

k i
x   or 

k i
  , 

the 

set
k

F  And

  
d et

, ,,
 \          ( )

k k j k k k j kk k j k
x su ch th a t y x a n dy xE lY 


    

is non-empty, then set 

1k k
x x


 ,  1 1 2

,
k k k

 


    and define 

   1 ,
\

k k k k
Y Y x y






   where   is the 

index j of any point 
,k j

y  in 
k

E , for instance, such 

that 

2

, ,
a rg m a x ( )

j k j k k j k
y x l x

 



  . 

Step 4e: reduce trust region radius. If 

1 m a x
,

k k
p p   , and either 

    
k k ii

andx v    or 

k k
F E   , then set 

 1 1 2 1
, ,

k k k k k
x x  

 
      and define 

1k k
Y Y


 . 

Step 5: update the model and Lagrange 

polynomial. 

If 
1k k

Y Y


 , compute the interpolation model 

1k
m


 around 

1k
x


 using 

1k
Y


 and the associated 

Lagrange polynomials  1 ,
0

p

k j
j

l



. Increment k  by 

one and go to step 1. 

 

III. GLOBAL CONVERGENCE 

    In this section, we prove the convergence 

results of this algorithm. It made use of the 
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self-correcting property presented above and thus 

depended on the convergence results obtained by [6], 

and the addition of non-monotone method can be 

splendidly proved the convergence of new algorithm.  

First, the assumptions are stated. 

A1: the objective function f  is continuously 

differentiable in an open set V containing all iterates 

generated by the algorithm, and its gradient 
x

f  is 

Lipschitz continuous in V  with constant L ; 

A2: there exists a constant 
lo w

k  such that 

( ) k
lo w

f x   for every x V ; 

A3: there exists a constant 
H

k L  such that 

1
k H

H k   for every 0k  ; 

A4: 1
k

Y n   for every 0k  . 

Note that A1 only assumes the existence of first 

derivatives, not that they can be computed. 

Lemma2.3. [6] Assume that, for some numbers 

 
0

t

i i



with

0 0

2 2 0

t td e f d e f

a b s i i

i i

   

 

       

If one defines 

*

*

0 , , 0

*

, ,

        a rg m aa rg m a xx
i

i t t

j

j

i

j
a n d ji  

 




 

 then 

*

2

2

a b s

j
t

 



  .  

Lemma2.4. suppose that the sequence  k
x  is 

generated by algorithm 2.1. Then the inequality 

1 1
( ) C ,

k k k
f x C k

 
    hold, where 

k
C  is 

defined in (9). 

Proof. We prove 
0

( )
k

C f x  by induction. 

Obviously, when 0j  , we have 
0 0

( )C f x . 

Assume that 
0

( )
j

C f x  holds when 

1, , 1 .j k   When j k , from (9). We have  

1 1 1 1 1 0 0

0

(x ) ( ) ( )
( )

k ik k k k k

k

k k

Q C f Q f x f x
C f x

Q Q

 
    

 
  

,                    (14) 

then we obtain that 
1 1 0

( ) ( )
k k k

f x C C f x
 

   . 

We complete the proof. 

Lemma2.5. At the k-th iteration, the solution of the 

wedge trust region sub-problem (10)-(12) satisfies the 

fraction of Canchy decrease condition: 

             

( ) ( ) m in ,
k

k k k k c k k

k

g
m x m x k g

G


  

   
  

,                        

(15) 

Where 
1

(0 , )
4

c
k   is a constant. 

Proof. From Lemma 6.1.3 in [17], we know that if 

e

k
s  is the exact solution of (10)-(11), then  

1
( ) ( s ) m in ,

2

ke

k k k k k k k

k

g
m x m x g

G

  
    

  

.                    (16) 

As the process of solving the sub-problem in the 

wedge trust region methods, under the safety 

management (16), we can deduce from (13) that there 

exists a constant 
1

(0 , )
4

c
k   such that 

1 1
( ) ( s ) ( ) ( s ) m in , m in ,

2 4

e k k

k k k k k k k k k k k k c k k

k k

g g
m x m x m x m x g k g

G G

        
   

      
   

. 

Lemma2.6. [6] Suppose that A1, A3 and A4 hold and 

assume that, for some 
0

0k   and all 

0
k k ,

k g
g k  for some 0

g
k  . Then there 

exist a contain 0k

  such that, for all 

0
k k , 

k
k


  . 

Lemma2.6. suppose that A1, A2 andA4 hold and that 
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there is a finite number of successful iterations. Then 

  in flim 0
k

k

g
 

 . 

Proof. When the 
1k

  , we can obtain that every 

iteration is unsuccessful, 
*k

x x  for some 
*

x  and 

all k  large. Then by Lemma 2.6, we have that 

0
k

k


    on all iterations. So the 

sequence k
x is non-increasing and bounded below, 

and therefore convergent. Let 
0

lim

d e f

k
k

k


 

    . 

In the type 4a, 
s w itc h

k


  , so 
k

  is decreased. 

In the type 4c, the 
m a x

p  can be necessary to ensure 

that all interpolation points belong to 
*

( , )B x 


 . 

In the type 4d, the new trial point replaces some 

interpolation point from the set 
k

E , for all k  large 

enough, the trial point 
k

x


 replaces a previous 

interpolation point 
,k j

y  such that 
,

( )
k j k

l x


  . 

In the type 4e, the iterations can not happen infinitely 

often because 
k

  is bounded below by 


  and 

2
1 .    

Lemma2.7. [6] Suppose that A1-A4 holds and that 

the number of successful iterations is infinite, then 

  in flim 0
k

k

g
 

 . 

Lemma2.8. Suppose that A1, A3 and A4 hold. Then, 

for any constant 1  , if iteration k  is 

unsuccessful, 
m a xk

p p p  ,
k

F   and 

             

1

2

(1 )1
m in ,

2 ( 1) (p 1)

d e f

c

k k k

H e f k

k
g k g

k k






 
   

    

,              (17) 

 then 
k

E  . 

Proof . As we assume that the maximum number of 

points in the set 
m a xk

p p  is reached, and assume 

iteration k is unsuccessful, which is to say that 

(

s

)

( ) ( )

k

k k

k k

k k k

x s

x

C f

m xm










. Lemma2.4. guarantee 

that 
1

( ) ( )
k k k

C f fx x


  , then we have 

( ( )

(

)

)s) (

k k k

kk k k k

x x s

x

f

m m x

f










. Now, because of the 

identity (( ) )
k k k

x m xf  , this in turn means that 

 

( ) ( ) (1 )s )s()(
k k k k k k kk k k

x s x xf m m xm     

.              (18) 

We may now deduce from Lemma2.1. that 

    

2

, ,

0

( ) ( ) ( ) )s (

p

k e f k jk k k k k k kk j

j

k
f m k yx s x s x slx



     

.            (19) 

Observe now that 
k

F   ensures that 

.k j k k
y x     whenever 

,
s( ) 0

k kk j
l x   . 

This observation and the trust-region bound then 

imply that 

, ,
( 1)

k j k k k j k k k
y x s y x s         f

or j  such that 
,

( ) 0
kj kk

xl s  , so that (18) and 

(19) then imply that 

2 2

,

0

( ) ( ) ( 1) ( )s s

p

k e fk k k k k kk k j

j

f m ls kx x x



      

.   (20) 

On the other hand, the Cauchy condition [6] and (17) 

together imply that 
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( ( )s)
k kk kk c k k

m mx k gx   , hence (20) 

gives that 

 

, 2

0

(1 ) k
( )

( 1)
s

p

c k

k j

j e f

k

k

k
x

g
l

k












 .                      

(21) 

As a consequence, we have, using (21) and (17) 

successively, that 
,

0

( ) (p 1)
k k

p

k j

j

sl x s



   . 

Moreover, (6) also implies that 

,

0

( ) 1
k k

p

k j

j

sl x



  . We may use this equality, and 

Lemma 2.1. to deduce that, if 

,
0 , ,

*
a    m a x ( )r ,g

k j
j p

k k
j xl s



 


 then 

,
( )

k kk
x sl


    for 

 
,

0 , ,

*

    m a x ( )rg ,a
k j

j p

j

k k

j

xl s




 


 which together 

with (19) and (20), implies 
k

E  . 

IV. CONCLUSIONS 

In this paper, we proposed a non-monotone 

self-correcting wedge trust-region method for 

unconstrained derivative-free optimization and 

analyzed the properties of the new algorithm. It is 

efficient for solving these unconstrained 

derivative-free optimization problems. The global 

convergence result of the new proposed method is 

proved under some mild conditions. In the near future, 

we will learn and seek more efficient non-monotone 

strategies for the wedge trust region methods to settle 

the unconstrained derivative-free optimization 

problem. 
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