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Abstract

In this paper, we propose a UDFO
non-monotone wedge trust region algorithm with
modified self-correcting geometry. This method can
be projected to substantially decrease the need of
geometry improving steps by exploiting
self-correcting property of the interpolation set
geometry, and the design of this algorithm depends
on a self-correction mechanism resulting from the
combination of the non-monotone wedge trust-region
framework with the polynomial interpolation setting.
The global convergence of this algorithm is proved
under some mild conditions.
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I. INTRODUCTION
We consider the unconstrained optimization
problem:

min f(x), xi R", (1)

Where f is a nonlinear function from R" into

R . We first recall the general trust-region framework
where derivatives of f are available before turning

to the derivative-free case. At each iteration of an
iterative trust-region method, a model of the form

T 1 T
m(x, +s)kf x 4 kg+;s H. s

2

15

(Where g, and H,k are the function’s gradient

and Hessian) is minimized inside the following trust
region

B, (X,,A,) ={xe R"H|x—xk||oo <A,
®)
Where ||, denotes the infinity norm.
In our derivative-free context, the model (2) is

determined by the interpolation set Y, , and the set

Y

. of interpolation points must satisfy the conditions

for all This

m, (y)= f(y) yeyY

k

derivative-free methods date back to the algorithm of
Winfield [1, 2], which is one of the pioneering works
in trust region methods. Excellent reviews on trust
region  algorithms
derivatives are given in [3, 4] and [5]. In order to
keep the interpolation set from becoming degenerate,

for  optimization  without

many methods use explicit “geometry-improving”
steps, and then Scheinberg and Toint [6] exploited a
self-correcting property of the interpolation set
geometry with the trust region algorithm. Marazzi
and Nocedal [7] proposed another strategy in which a
“wedge constraint” is imposed to the trust region
sub-problem so that the geometry of the interpolation
set will not be destroyed after the trial point is
included into the set. Considering the effectiveness of
non-monotone strategy when coping with the
problems, Zhang [8] proposed a new non-monotone
method for trust-region algorithm. In this paper, we
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presented a hybrid algorithm which combined a
non-monotone wedge trust region method and
self-correcting geometry technique.

The paper is organized as follows. In section
2 we recommend some preliminaries about
interpolation schemes, and introduced the wedge and
non-monotone strategies in detail. We design the new
non-monotone wedge trust-region algorithm with
self-correcting geometry strategy fanaily. In section 3,
we prove the global convergence of our algorithm. In

section 4, we make some conclusions.

Il. AUDFO NON-MONOTONE
TRUST-REGION ALGORITHM WITH
SELF-CORRECTING GEOMETRY

A. The Interpolation Models

Recently, many researchers proposed some
different techniques to construct the interpolation
model [9, 10, 11]. In the following, let us describe the
definition and lemmas of the interpolation model

minutely. Consider p: , the space of polynomials of

degree <d in R", and let p, 00 p+1 be the

dimension of the space.
Definition 2.1.[12, 13] Given a set of interpolation

Y ={y0,y1,--- ,yp} c R",abasisof p,=p+1
polynomials 1,(x)(§=0,+,p)e p:
4)

is called a basis of Lagrange polynomials if

[17i = jl
=4
[0,i= ]
()
If Y is poised, then Lagrange polynomials exist
and are unique. Moreover, they have a lot of useful

L,y =4,

properties. Particularly, we are interested in the

crucial fact that, if m(x) interpolates f (x) atthe

pointsin Y ,thenforall x,

16

m(x) =3 ).

j=0

p
It can also be shown that > I, (x) =1,¥xe R".
j=0
Given the

Lemma 2.1.[14,

B(X,\/n_A)d:{v eR" H|v— x||2 < \/n_A} , a poised

15] sphere

set Y < B(X.\/n_A) and its associated basis of
Lagrange polynomials {Ii(x)}izl, there exists
constants k, >0 and k, > 0 such that, for any

interpolation polynomial m(x) of degree one or

higher of the form (6) and

any point

y e B(X,\/n_A),OI’Ie has

It ) -m)=< kefzp Iy = v[ Il and

IVE ) -vm), <k, A4, ©)
where A = ir:rl??(p YEBT(?%AJH(Y)L

Lemma 2.2. For any given A >1 , a closed ball

B, and a fixed polynomial basis ¢ , algorithm 2.1

terminates with a A -poised set Y after a finite
number of iterations where the number of steps

dependson A and ¢ .

B. Non-Monotone Technology

Currently, non-monotone technique has been
studied by many scholars [8, 16, 17, 18]). Toint
pointed out that the non-monotone technique can
enhance the possibility of finding a global
optimization. And improve the rate of
convergence in cases where a monotone scheme is
forced to creep along the bottom of a narrow curved
valley. In this paper, we can use the ratio [8]

it can
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C,— f(x, +s,)

Py =
m, (x,)-m, (x, +s,)
(8)
where
jf(xk),kzo, (1k=o0,
C, = e -
k l']k—lok—lzkfl ) k<1, Q, <L77k,1Qk,1
k
©)
nmln < [0’1) ! 77ma>< [nmin‘l] and

M 1 € [Mmin Mwa ] @€ two given constants.

C. Wedge Trust Region Method.

The wedge trust region method was
proposed by Marazzi and Nocedal [7]. The wedge
constraint is added to the trust region sub-problem,

and we have

minm, (x, +5) (10)
s.t.”s”ﬁ A, (11)
seW,, (12)
Where W, is a set which contains the “taboo

region” area, and the purpose is to avoid the new
point falling into it. As for solving the wedge trust
region sub-problem (10)-(12), we usually first solve
the standard trust region sub-problem without the

wedge constraint and get a solution s, at the k-th
iteration. If s, satisfies the wedge constraint, we set

SE
k — Tk

s as the trail step. Otherwise, the wedge

constraint is active. By rotating s, , we find a vector
satisfying the wedge constraint. Then we set the trail
point x, = x, + s, . One point must be mentioned is

that there is a measure to make sure the sufficient
descent of the model function in the rotating process,

+1,

17

ie.,
+ 1 e
m (x,)-m,(x) > —[mk(xk)—mk(xk +sk)]
2

(13)
Algorithm 2.1 UDFO non-monotone trust
region algorithm with self-correcting geometry
kS%e%a’ 0: initialization.

An initial trust-region radius A , initial accuracy

threshold ¢ are given. An initial poised

0

interpolation set Y, that contains the starting point

X around

, is known. An interpolation model m

0

and associates Lagrange polynomial {1, j}p
GS

Xo

are computed. Constants 7, ,

A

switch

€(0,1),

ne€(0,1),0<y,<y,<Lue(01),0>0,21>20,A>1

, P, =n+1 are also given. Choose v, = x,

Where v, is variable introduced to keep track if the
model at x, is known to be well poised. Set k =0
and i=o0.

Step 1: criticality test.

Step la: define m; =m, .

Step 1b: if v, (x,)||< &, st &, = u|v, m(x)],

compute a A -poised model in B(x,,&;,,)

i+1

and increment i by one. If |

Vxnﬁi(xk)"< ¢, then
return x, , otherwise start step 1b again.
Step 1c:set m, =, A, =6|v,m,(x,)| and define

Vi

= x, (what indicates that the model at x, is well
poised and steps 4b and 4c need not to be visited in
an unsuccessful iterate) if a new model has been
computed.

Step 2: compute a trial point.

Solve the wedge trust region sub-problem (10) for
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getting s, , so the trial point x, = x, +s, .

Step 3: evaluate the objective function at the trial
point.

Compute f(x,) and p, from (8).

Step 4: define the next iterate.

Step 4a: Augment interpolation set (p, < p,,, ). If
P < P o then: define v, =Y u{x}
If p, 27, , then define x_,=x, and choose
A,2A, . If p <n,, define x, , =x,_ and if
Ay >A e SBU A e[r,A7,A, ], Otherwise
A=A

Step 4b: Successful iteration. If o, 27, and
p,=p,., define x., =x;,choose A, >4,

and define v, =V, \{x;} U{y,.} . where z s
the index j ofany point y, , in Y, , for instance,

such that X! .

= arg max : 1, (x.))
T = 9 i Y. L ki 3

Step 4c: replace a far interpolation point. If p, <7,

p,=p,.,  ether x #v, or A, <g , and the
set

det
F, = {yk,,— €Y, such that‘ym. - X,

is non-empty, set

X and define

k+1 X

k

- ! Ak+1e[71Ak’72Ak]
=Y \{x }u{y,,} where z is the index

j ofanypoint y,, in F,, forinstance, such that

18

2
N
yk,j - Xy »

r:argmaxj‘ L (x0)
Step 4d: replace a close interpolation point. If
P, <N, P, =p,. ,either x =v, or A <g,

the

set And

det

E.={¥ Y, \{x}such that| Yo, = %

is non-empty, then set
Xeor = X Ak+1 € [71Ak,}/2Ak] and  define
Yea =Y Mx fud{y,.} where <z is the

index j of any point y, , in E,, for instance, such

that
+ 2 +

T =arg maxj‘yhj =X L (x|
Step 4e: reduce trust region radius. If
P <M, Py = Poa , and either
[x, =v,and A, > ¢&,] or
F,UE, =¢ , then set
X = XA €[7,A,, 7,0, ] and define
Y =Y
Step 5: wupdate the model and Lagrange
polynomial.
If Y, =Y, , compute the interpolation model

> pA,and 1, (x;) = 0}

m

., around x,,

, using Y, ., and the associated

Lagrange polynomials {IM’j } ’

j=0

. Increment k by

one and go to step 1.

I1l. GLOBAL CONVERGENCE
In this section, we prove the convergence

results of this algorithm. It made use of the
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self-correcting property presented above and thus

depended on the convergence results obtained by [6],

and the addition of non-monotone method can be

splendidly proved the convergence of new algorithm.
First, the assumptions are stated.

Al: the objective function f is continuously
differentiable in an open set Vv containing all iterates

generated by the algorithm, and its gradient v _f is

Lipschitz continuous in vV with constant L ;

A2: there exists a constant k,  such that
f(x)>k,, forevery xeV;
A3: there exists a constant k, > L such that

1+||Hk||s k, forevery k >0;

A4: |Yk|2 n+1 forevery k >0.

Note that A1 only assumes the existence of first
derivatives, not that they can be computed.
Lemma2.3. [6] Assume that, for some numbers

) def t t def

{ai}i,OWithUabs = z |ai|> 22 a,=20>0
- i=0 i=0
If one defines
i =arg max |a|| and j =arg max ‘a ‘ then
i=0,..t j=0,..t
j=i”
‘ . O ps 20
a .=
! 2t

Lemma2.4. suppose that the sequence {x,} s

generated by algorithm 2.1. Then the inequality

f(x,,)<C,, <

k+1 —

C,.vk hold, where C,k is

defined in (9).

Proof. We prove C, < f(x,) by induction.
Obviously, when j=0, we have C = f(x,) .
Assume that C, = f(x,) holds  when

1 1
)= m (x5 )z =[m o) - m g+ sh ]z —lg, [minda
2 4 §

ji=1,...,k=1. When j =k ,from(9). We have

C

_ Uk—lQik—lck—l_'_ f(Xk) < nk—le—lf(X0)+ f(Xo)

k

Qk Qk

; (14)

then we obtain that f (x, ,)<C, <

k+1 —

C, < f(x,).

We complete the proof.

Lemma2.5. At the k-th iteration, the solution of the
wedge trust region sub-problem (10)-(12) satisfies the
fraction of Canchy decrease condition:

m, (x,)-m, (%) =k,

gk”min{A Ml

e

(15)
1 .
Where k_e (0,—) isaconstant.
4
Proof. From Lemma 6.1.3 in [17], we know that if

s’ is the exact solution of (10)-(11), then

k

e l . J’
m, (x,)-m(x, +s,)2 ;”gk”mln [Ak,

. (16)

As the process of solving the sub-problem in the
wedge trust region methods,
management (16), we can deduce from (13) that there

under the safety

. 1
exists a constant k_e (0,—) such that
4

( |
Il

N}

Lemma2.6. [6] Suppose that Al, A3 and A4 hold and

that, some k, >0 and all

for .

assume
k >k, ,||gk||z k, for some k > 0. Then there

exist a contain k, > 0 such that, for all k > k

0!

A, >k

k A"

Lemma2.6. suppose that A1, A2 andA4 hold and that
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there is a finite number of successful iterations. Then

lim inf|g,[=0.
k— o
Proof. When the p, < #,, we can obtain that every

iteration is unsuccessful, x, = x, for some x, and

k

all k large. Then by Lemma 2.6, we have that

A,>k, >0 on all iterations. So the

sequence { x, } is non-increasing and bounded below,

def
and therefore convergent. Let A = lim A, >k, .

k—

Inthe type 4a, A, .., > k,,s0 A, isdecreased.

In the type 4c, the p can be necessary to ensure

max

that all interpolation points belong to B (x,, A ) .
In the type 4d, the new trial point replaces some

interpolation point from the set E, , for all k large

enough, the trial point x, replaces a previous

interpolation point y, , such that Ik,j(xl:) > A

In the type 4e, the iterations can not happen infinitely

often because A _ is bounded below by A and

7, <Ll

Lemma2.7. [6] Suppose that A1-A4 holds and that
the number of successful iterations is infinite, then

Iirr:%ionf”gk”: 0.

Lemma2.8. Suppose that A1, A3 and A4 hold. Then,

for any constant A >1 , if iteration k is

unsuccessful, p=p, =p,, .F =¢ and

[ 1

1- k
A, <min|—, ( ’721) <
LkH 2k (B +1)"(p, A

+1)J

20

, (7)
then E, = ¢ .
Proof . As we assume that the maximum number of

points in the set p, = p is reached, and assume

iteration k is unsuccessful, which is to say that

C, - f(x, +s,)

< n . Lemma2.4. guarantee
m, (x,)-m(x, +s,)

that C_=> f(x )= f(x,_,) , then we have

f(x,)—- f(x, +5s,)

m, (x,)-m(x, +s,)

< n . Now, because of the

identity f (x,)=m, (x,), thisin turn means that

f (X +5,) =M, (x, +s)>@Q=n)|m, (x) - m, (x, +5,)

(18)
We may now deduce from Lemma2.1. that

P
0 450 -m, (x, +5)]<k, T |
j=0

(19)
Observe now that F, =¢  ensures that
‘yk_j—xk < pA,  whenever | (x, +s,)#0 .

This observation and the trust-region bound then
imply that

or j suchthat I, ,(x, +s,)= 0, so that (18) and

<|

Y= X~ S, Y = %, +||sk||§(/)’ +10A, f

(19) then imply that

p
[f(x, +5)-m (x, +s)|<k, (B+D7ALY
j=0

(20)

'| e .
| ||g ; ||d:f k, ||gQrH the other hand, the Cauchy condition [6] and (17)

together imply that

www.ijresonline.com
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m,(x,)-m_ (X, +sk)|2 k, gk”Ak , hence (20)

gives that

Ca-mk o

I (x, +s,)|> ————<1=k0
A N R

j=0
(21)
As a consequence, we have, using (21) and (17)

P
successively, that >
j=0

Ikvj(xk +8)|=s(pA+1).

Moreover, also that

(6)

implies

P
>l (x, +s,.) =1.We may use this equality, and

=0

Lemma 2.1. to deduce that, if
jo=arg max |l .(x, +5s.)| then
j=0,...,p ’
I . (x +s)|=A for
r=arg max [l (x, +s.)], which together

j=0,...,p
BN

with (19) and (20), implies E, = ¢ .

IV. CONCLUSIONS
In this paper, we proposed a hon-monotone
method for

self-correcting wedge trust-region

unconstrained  derivative-free  optimization and
analyzed the properties of the new algorithm. It is
efficient  for  solving  these  unconstrained
derivative-free optimization problems. The global
convergence result of the new proposed method is
proved under some mild conditions. In the near future,
we will learn and seek more efficient non-monotone
strategies for the wedge trust region methods to settle
the optimization

problem.

unconstrained  derivative-free
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