A UDFO non-monotone Wedge Trust-Region Algorithm with Modified Self-Correcting Geometry

Weili Zheng, Qinghua Zhou* College of Mathematics and Information Science, Hebei University, Baoding, 071002, Hebei Province, China

Abstract

In this paper, we propose a UDFO non-monotone wedge trust region algorithm with modified self-correcting geometry. This method can be projected to substantially decrease the need of geometry improving steps by exploiting a self-correcting property of the interpolation set geometry, and the design of this algorithm depends on a self-correction mechanism resulting from the combination of the non-monotone wedge trust-region framework with the polynomial interpolation setting. The global convergence of this algorithm is proved under some mild conditions.

Keywords: *trust-region, non-monotone wedge technique, self-correcting geometry, unconstrained derivative-free optimization.*

I. INTRODUCTION

We consider the unconstrained optimization problem:

min
$$f(x)$$
, $x \hat{I} R^n$, (1)

Where f is a nonlinear function from R^n into R. We first recall the general trust-region framework where derivatives of f are available before turning to the derivative-free case. At each iteration of an iterative trust-region method, a model of the form

$$m_{k}(x_{k} + s) = f \quad x_{k} + y_{k}^{T} \mathbf{g} + \frac{1}{2}s^{T}H_{k}s$$
(2)

(Where g_k and H_k are the function's gradient and Hessian) is minimized inside the following trust region

$$B_{\infty}(x_{k}, \Delta_{k}) = \left\{ x \in R^{n} \left\| \left\| x - x_{k} \right\|_{\infty} \le \Delta_{k} \right\}$$
(3)

Where $\|\cdot\|$ denotes the infinity norm.

In our derivative-free context, the model (2) is determined by the interpolation set Y_k , and the set

 Y_{k} of interpolation points must satisfy the conditions

$$m_k(y) = f(y)$$
 for all $y \in Y_k$. This

derivative-free methods date back to the algorithm of Winfield [1, 2], which is one of the pioneering works in trust region methods. Excellent reviews on trust algorithms for optimization region without derivatives are given in [3, 4] and [5]. In order to keep the interpolation set from becoming degenerate, many methods use explicit "geometry-improving" steps, and then Scheinberg and Toint [6] exploited a self-correcting property of the interpolation set geometry with the trust region algorithm. Marazzi and Nocedal [7] proposed another strategy in which a "wedge constraint" is imposed to the trust region sub-problem so that the geometry of the interpolation set will not be destroyed after the trial point is included into the set. Considering the effectiveness of non-monotone strategy when coping with the problems, Zhang [8] proposed a new non-monotone method for trust-region algorithm. In this paper, we

presented a hybrid algorithm which combined a non-monotone wedge trust region method and self-correcting geometry technique.

The paper is organized as follows. In section 2 we recommend some preliminaries about interpolation schemes, and introduced the wedge and non-monotone strategies in detail. We design the new non-monotone wedge trust-region algorithm with self-correcting geometry strategy fanaily. In section 3, we prove the global convergence of our algorithm. In section 4, we make some conclusions.

II. A UDFO NON-MONOTONE TRUST-REGION ALGORITHM WITH SELF-CORRECTING GEOMETRY

A. The Interpolation Models

Recently, many researchers proposed some different techniques to construct the interpolation model [9, 10, 11]. In the following, let us describe the definition and lemmas of the interpolation model minutely. Consider p_n^d , the space of polynomials of

degree $\leq d$ in R^n , and let $p_1 \square p + 1$ be the dimension of the space.

Definition 2.1.[12, 13] Given a set of interpolation $Y = \left\{ y^0, y^1, \dots, y^p \right\} \subset R^n, \text{ a basis of } p_1 = p + 1$

 $l_i(x)(j=0,\cdots,p) \in p_n^d$

polynomials

(4)

is called a basis of Lagrange polynomials if

$$l_{j}(\mathbf{y}^{i}) = \delta_{ij} = \begin{cases} 1, i = \mathbf{j}, \\ 0, i \neq \mathbf{j}. \end{cases}$$
(5)

If Y is poised, then Lagrange polynomials exist and are unique. Moreover, they have a lot of useful properties. Particularly, we are interested in the crucial fact that, if m(x) interpolates f(x) at the points in Y, then for all x,

$$m(x) = \sum_{j=0}^{p} f(y^{j})l_{j}(x)$$

It can also be shown that $\sum_{j=0}^{p} l_{j}(x) = 1, \forall x \in \mathbb{R}^{n}$.

Lemma 2.1.[14, 15] Given the sphere $B(x, \sqrt{n\Delta}) \stackrel{def}{=} \left\{ v \in R^n |||v - x||_2 \le \sqrt{n\Delta} \right\}$, a poised set $Y \subset B(x, \sqrt{n\Delta})$ and its associated basis of Lagrange polynomials $\left\{ l_i(x) \right\}_{i=1}^p$, there exists constants $k_{ef} > 0$ and $k_{eg} > 0$ such that, for any interpolation polynomial m(x) of degree one or higher of the form (6) and any point $y \in B(x, \sqrt{n\Delta})$, one has

$$\left\| f(\mathbf{y}) - \mathbf{m}(\mathbf{y}) \right\| \le k_{ef} \sum_{i=0}^{p} \left\| \mathbf{y}^{i} - \mathbf{y} \right\|_{2}^{2} \left| l_{i}(\mathbf{y}) \right|$$
 and

$$\left\|\nabla f(\mathbf{y}) - \nabla \mathbf{m}(\mathbf{y})\right\|_{2} \le k_{eg} \Lambda \Delta, \tag{7}$$

where $\Lambda = \max_{i=1,\dots,p} \max_{\mathbf{y}\in \mathbf{B}_{2}(x,\sqrt{n\Delta})} |l_{i}(\mathbf{y})|.$

Lemma 2.2. For any given $\Lambda > 1$, a closed ball B, and a fixed polynomial basis ϕ , algorithm 2.1 terminates with a Λ -poised set Y after a finite number of iterations where the number of steps depends on Λ and ϕ .

B. Non-Monotone Technology

Currently, non-monotone technique has been studied by many scholars [8, 16, 17, 18]). Toint pointed out that the non-monotone technique can enhance the possibility of finding a global optimization. And it can improve the rate of convergence in cases where a monotone scheme is forced to creep along the bottom of a narrow curved valley. In this paper, we can use the ratio [8] International Journal of Recent Engineering Science (IJRES), ISSN: 2349-7157, Volume 3 Issue 1 January to February 2016

$$\rho_{k} = \frac{C_{k} - f(x_{k} + s_{k})}{m_{k}(x_{k}) - m_{k}(x_{k} + s_{k})}$$
(8)

where

$$C_{k} = \begin{cases} f(x_{k}), k = 0, \\ \frac{\eta_{k-1}Q_{k-1}C_{k-1} + f(x_{k})}{Q_{k}}, k \leq 1, \end{cases} \quad Q_{k} = \begin{cases} 1, k = 0, \\ \eta_{k-1}Q_{k-1} + 1 \end{cases}$$
(9)

 $\eta_{\min} \in [0,1)$, $\eta_{\max} \in [\eta_{\min},1]$ and

 $\eta_{k-1} \in [\eta_{\min}, \eta_{\max}], \text{ are two given constants.}$

C. Wedge Trust Region Method.

The wedge trust region method was proposed by Marazzi and Nocedal [7]. The wedge constraint is added to the trust region sub-problem, and we have

$$\min m_k (x_k + s) \tag{10}$$

$$s.t. \left\| s \right\| \le \Delta_k \tag{11}$$

$$s \notin W_k$$
, (12)

Where W_k is a set which contains the "taboo region" area, and the purpose is to avoid the new point falling into it. As for solving the wedge trust region sub-problem (10)-(12), we usually first solve the standard trust region sub-problem without the wedge constraint and get a solution s_k^e at the k-th iteration. If s_k^e satisfies the wedge constraint, we set $s_k = s_k^e$ as the trail step. Otherwise, the wedge constraint is active. By rotating s_k , we find a vector satisfying the wedge constraint. Then we set the trail point $x_k^+ = x_k + s_k$. One point must be mentioned is that there is a measure to make sure the sufficient descent of the model function in the rotating process, i.e.,

$$m_{k}(x_{k}) - m_{k}(x_{k}^{+}) \geq \frac{1}{2} \left[m_{k}(x_{k}) - m_{k}(x_{k} + s_{k}^{e}) \right]$$
(13)

Algorithm 2.1 UDFO non-monotone trust region algorithm with self-correcting geometry $, k \ge 1$, Step 0: initialization.

An initial trust-region radius Δ_0 , initial accuracy threshold ε_0 are given. An initial poised interpolation set Y_0 that contains the starting point x_0 is known. An interpolation model m_0 around x_0 and associates Lagrange polynomial $\{l_{0,j}\}_{j=1}^{p}$ are computed. Constants η_1 ,

$$\Delta_{switch} \in (0,1)$$

 $\eta \in (0,1), 0 < \gamma_1 < \gamma_2 < 1, \mu \in \left(0,1\right), \theta > 0, \beta \ge 1, \varepsilon \ge 0, \Lambda > 1$

, $p_{\max} \ge n+1$ are also given. Choose $v_0 \ne x_0$

Where v_i is variable introduced to keep track if the model at x_k is known to be well poised. Set k = 0 and i = 0.

Step 1: criticality test.

Step 1a: define $\hat{m}_i = m_k$.

Step 1b: if $\|\nabla_x \hat{m}_i(x_k)\| < \varepsilon_i$, set $\varepsilon_{i+1} = \mu \|\nabla_x \hat{m}(x_k)\|$, compute a \wedge -poised model \hat{m}_{i+1} in $B(x_k, \varepsilon_{i+1})$ and increment *i* by one. If $\|\nabla_x \hat{m}_i(x_k)\| < \varepsilon$, then return x_k , otherwise start step 1b again.

Step 1c: set $m_k = \hat{m}_i, \Delta_k = \theta \| \nabla_x m_k(x_k) \|$ and define $v_i = x_k$ (what indicates that the model at x_k is well poised and steps 4b and 4c need not to be visited in an unsuccessful iterate) if a new model has been computed.

Step 2: compute a trial point.

Solve the wedge trust region sub-problem (10) for

getting s_k , so the trial point $x_k^+ = x_k + s_k$.

Step 3: evaluate the objective function at the trial point.

Compute $f(x_k^+)$ and ρ_k from (8).

Step 4: define the next iterate.

Step 4a: Augment interpolation set ($p_k < p_{max}$). If

 $p_k < p_{\max}$, then: define $Y_{k+1} = Y_k \cup \{x_k^+\}$. If $\rho_k \ge \eta_1$, then define $x_{k+1} = x_k^+$ and choose $\Delta_{k+1} \ge \Delta_k$. If $\rho_k < \eta_1$, define $x_{k+1} = x_k$ and if $\Delta_k > \Delta_{switch}$, set $\Delta_{k+1} \in [\gamma_1 \Delta_k, \gamma_2 \Delta_k]$, otherwise $\Delta_{k+1} = \Delta_k \, .$

Step 4b: Successful iteration. If $\rho_k \ge \eta_1$ and $p_k = p_{\max}$, define $x_{k+1} = x_k^+$, choose $\Delta_{k+1} \ge \Delta_k$ $\rho_k < \eta_1, p_k = p_{\max}$, and define $Y_{k+1} = Y_k \setminus \{x_k^+\} \cup \{y_{k,\tau}\}$, where τ is $[x_k = v_i \text{ and } \Delta_k > \varepsilon_i]$ or the index j of any point $y_{k,j}$ in Y_k , for instance, such that $\tau = \arg \max_{i} \|y_{k,i} - x_{k}^{+}\|^{2} |l_{k,i}(x_{k}^{+})|$.

Step 4c: replace a far interpolation point. If $\rho_k < \eta_1$, $p_k = p_{\max}$, either $x_k \neq v_i$ or $\Delta_k \leq \varepsilon_i$, and the set

 $F_{k} = \left\{ y_{k,j} \in Y_{k} \text{ such that } \left\| y_{k,j} - x_{k} \right\| > \beta \Delta_{k} \text{ and } l_{k,j}(x_{k}^{+}) \neq 0 \right\}$ is non-empty, set

 $x_{k+1} = x_k$, $\Delta_{k+1} \in [\gamma_1 \Delta_k, \gamma_2 \Delta_k]$ and define $Y_{k+1} = Y_k \setminus \{x_k^+\} \cup \{y_{k,\tau}\}$ where τ is the index *j* of any point $y_{k,i}$ in F_k , for instance, such that

 $\tau = \arg \max_{j} \left\| y_{k,j} - x_{k}^{+} \right\|_{T}^{2} \left| l_{k,j}(x_{k}^{+}) \right|.$

Step 4d: replace a close interpolation point. If $\rho_k < \eta_1, p_k = p_{\max}$, either $x_k \neq v_i$ or $\Delta_k \leq \varepsilon_i$, the

$$F_{\mu} = \phi$$
 And

$$E_{k}^{det} = \left\{ y_{k,j} \in Y_{k} \setminus \{x_{k}\} \text{ such that } \left\| y_{k,j} - x_{k} \right\| \le \beta \Delta_{k} \text{ and } l_{k,j}(x_{k}^{+}) > \Lambda \right\}$$

is non-empty, then set
 $x_{k+1} = x_{k}$, $\Delta_{k+1} \in [\gamma_{1}\Delta_{k}, \gamma_{2}\Delta_{k}]$ and define
 $Y_{k+1} = Y_{k} \setminus \{x_{k}^{+}\} \cup \{y_{k,\tau}\}$ where τ is the
index *j* of any point $y_{k,j}$ in E_{k} , for instance, such that

$$\tau = \arg \max_{j} \left\| y_{k,j} - x_{k}^{*} \right\|_{\infty}^{2} \left| l_{k,j}(x_{k}^{*}) \right|.$$

Step 4e: reduce trust region radius. If and either $F_{\mu} \cup E_{\mu} = \phi \qquad ,$ then set

$$x_{k+1} = x_k, \Delta_{k+1} \in [\gamma_2 \Delta_k, \gamma_1 \Delta_k]$$
 and define

 $Y_{k+1} = Y_k \; .$

set

Step 5: update the model and Lagrange polynomial.

If $Y_{k+1} \neq Y_k$, compute the interpolation model m_{k+1} around x_{k+1} using Y_{k+1} and the associated Lagrange polynomials $\{l_{k+1,j}\}_{j=0}^{p}$. Increment k by one and go to step 1.

III. GLOBAL CONVERGENCE

In this section, we prove the convergence results of this algorithm. It made use of the self-correcting property presented above and thus depended on the convergence results obtained by [6], and the addition of non-monotone method can be splendidly proved the convergence of new algorithm.

First, the assumptions are stated.

A1: the objective function f is continuously differentiable in an open set V containing all iterates generated by the algorithm, and its gradient $\nabla_x f$ is Lipschitz continuous in V with constant L;

A2: there exists a constant k_{low} such that

$$f(x) \ge k_{low}$$
 for every $x \in V$;

A3: there exists a constant $k_{H} \ge L$ such that

$$1 + \left\| H_k \right\| \le k_H$$
 for every $k \ge 0$;

A4: $|Y_k| \ge n+1$ for every $k \ge 0$.

Note that A1 only assumes the existence of first derivatives, not that they can be computed.

Lemma2.3. [6] Assume that, for some numbers

$$\left\{\alpha_{i}\right\}_{i=0}^{t}$$
 with $\sigma_{abs} \stackrel{def}{=} \sum_{i=0}^{t} \left|\alpha_{i}\right| > 2\sum_{i=0}^{t} \alpha_{i} \stackrel{def}{=} 2\sigma > 0$

one

defines

$$i^* = \arg \max_{i=0,\dots,t} |\alpha_i| \ and \ j^* = \arg \max_{\substack{j=0,\dots,t \ j\neq i^*}} |\alpha_j|$$
 then

$$\left|\alpha_{j^*}\right| \geq \frac{\sigma_{abs} - 2\sigma}{2t} \quad .$$

Lemma2.4. suppose that the sequence $\{x_k\}$ is generated by algorithm 2.1. Then the inequality

 $f(x_{k+1}) \le C_{k+1} \le C_k, \forall k \text{ hold, where } C_k \text{ is defined in (9).}$

Proof. We prove $C_k \leq f(x_0)$ by induction.

Obviously, when j = 0, we have $C_0 = f(x_0)$.

Assume that $C_i \leq f(x_0)$ holds when

 $j = 1, \dots, k - 1$. When j = k, from (9). We have

$$C_{k} = \frac{\eta_{k-1}Q_{ik-1}C_{k-1} + f(x_{k})}{Q_{k}} \le \frac{\eta_{k-1}Q_{k-1}f(x_{0}) + f(x_{0})}{Q_{k}} = f(x_{0})$$
, (14)

then we obtain that $f(x_{k+1}) \leq C_{k+1} \leq C_k \leq f(x_0)$.

We complete the proof.

Lemma2.5. At the k-th iteration, the solution of the wedge trust region sub-problem (10)-(12) satisfies the fraction of Canchy decrease condition:

$$m_{k}(x_{k}) - m_{k}(x_{k}^{+}) \ge k_{c} \left\| g_{k} \right\| \min \left\{ \Delta_{k}, \frac{\left\| g_{k} \right\|}{\left\| G_{k} \right\|} \right\},$$

(15)

Where $k_c \in (0, \frac{1}{4})$ is a constant.

Proof. From Lemma 6.1.3 in [17], we know that if

 s_k^e is the exact solution of (10)-(11), then

$$m_k(x_k) - m_k(x_k + s_k^e) \ge \frac{1}{2} \left\| g_k \right\| \min \left\{ \Delta_k, \frac{\left\| g_k \right\|}{\left\| G_k \right\|} \right\}$$

(16)

As the process of solving the sub-problem in the wedge trust region methods, under the safety management (16), we can deduce from (13) that there exists a constant $k_c \in (0, \frac{1}{4})$ such that

 $m_{i}(x_{i}) - m_{i}(x_{i} + s_{i}) \geq \frac{1}{2} \left[m_{i}(x_{i}) - m_{i}(x_{i} + s_{i}') \right] \geq \frac{1}{4} \left\| g_{i} \right\| \min \left\{ \Delta_{i}, \frac{\left\| g_{i} \right\|}{\left\| g_{i} \right\|} \right\} \geq k_{c} \left\| g_{i} \right\| \min \left\{ \Delta_{i}, \frac{\left\| g_{i} \right\|}{\left\| g_{i} \right\|} \right\}$

Lemma2.6. [6] Suppose that A1, A3 and A4 hold and assume that, for some $k_0 \ge 0$ and all $k \ge k_0$, $\|g_k\| \ge k_g$ for some $k_g > 0$. Then there exist a contain $k_{\Delta} > 0$ such that, for all $k \ge k_0$,

 $\Delta_k \geq k_{\Delta}$.

Lemma2.6. suppose that A1, A2 and A4 hold and that

www.ijresonline.com

there is a finite number of successful iterations. Then $\lim_{k \to \infty} \inf \left\| g_k \right\| = 0 \; .$

Proof. When the $\rho_k < \eta_1$, we can obtain that every iteration is unsuccessful, $x_k = x_*$ for some x_* and all k large. Then by Lemma 2.6, we have that $\Delta_k > k_\Delta > 0$ on all iterations. So the sequence $\{x_k\}$ is non-increasing and bounded below, and therefore convergent. Let $\Delta_{\infty}^{def} = \lim_{k \to \infty} \Delta_k \ge k_0$. In the type 4a, $\Delta_{switch} > k_{\Delta}$, so Δ_{k} is decreased. In the type 4c, the p_{max} can be necessary to ensure that all interpolation points belong to $B(x_*, \beta \Delta_{\infty})$. In the type 4d, the new trial point replaces some interpolation point from the set E_k , for all k large

enough, the trial point x_{k}^{+} replaces a previous interpolation point $y_{k,j}$ such that $\left| l_{k,j}(x_k^+) \right| \ge \Lambda$. In the type 4e, the iterations can not happen infinitely often because Δ_k is bounded below by Δ_{∞} and

$$\gamma_2 < 1 \, .$$

Lemma2.7. [6] Suppose that A1-A4 holds and that the number of successful iterations is infinite, then $\lim \inf \|g_k\| = 0.$

Lemma2.8. Suppose that A1, A3 and A4 hold. Then, for any constant $\Lambda > 1$, if iteration k is unsuccessful, $p = p_k = p_{\max}$, $F_k = \phi$ and

then $E_k \neq \phi$.

Proof . As we assume that the maximum number of points in the set $p_k = p_{max}$ is reached, and assume iteration k is unsuccessful, which is to say that $\frac{C_k - f(x_k + s_k)}{m_k(x_k) - m_k(x_k + s_k)} < \eta$. Lemma2.4. guarantee

that $C_{i} \ge f(x_{i}) \ge f(x_{i-1})$, then we have

 $\frac{f(x_k) - f(x_k + s_k)}{m_k(x_k) - m_k(x_k + s_k)} < \eta$. Now, because of the

identity $f(x_k) = m_k(x_k)$, this in turn means that

$$\left| f(x_{k} + s_{k}) - m_{k}(x_{k} + s_{k}) \right| > (1 - \eta) \left| m_{k}(x_{k}) - m_{k}(x_{k} + s_{k}) \right|$$
(18)

We may now deduce from Lemma2.1. that

$$\left| f(x_{k} + s_{k}) - m_{k}(x_{k} + s_{k}) \right| \leq k_{ef} \sum_{j=0}^{p} \left\| y_{k,j} - (x_{k} + s_{k}) \right\|^{2} \left| l_{k,j}(x_{k} + s_{k}) \right|^{2}$$
(19)

Observe that $F_k = \phi$ now ensures that

$$\left\| y_{k,j} - x_k \right\| \le \beta \Delta_k$$
 whenever $l_{k,j}(x_k + s_k) \ne 0$

This observation and the trust-region bound then imply that

$$\left\| y_{k,j} - x_k - s_k \right\| \le \left\| y_{k,j} - x_k \right\| + \left\| s_k \right\| \le (\beta + 1)\Delta_k$$
f

or j such that $l_{k,j}(x_k + s_k) \neq 0$, so that (18) and

$$f(x_{k} + s_{k}) - m_{k}(x_{k} + s_{k}) | \leq k_{ef}(\beta + 1)^{2} \Delta_{k}^{2} \sum_{j=0}^{\nu} \left| l_{k,j}(x_{k} + s_{k}) \right|$$

 $\Delta_{k} \leq \min \left[\frac{1}{k_{\mu}}, \frac{(1-\eta_{1})k_{c}}{2k_{c}(\beta+1)^{2}(p_{k},\Lambda+1)} \right] \left\| g_{k} \right\|^{def} \leq (20)$ $\|g_{k}\| = k_{\Lambda} \|g_{k}\| \text{ the other hand, the Cauchy condition [6] and (17)}$

together imply that

20

(20)

www.iiresonline.com

$$|m_{k}(x_{k}) - m_{k}(x_{k} + s_{k})| \ge k_{c} ||g_{k}|| \Delta_{k}$$
, hence (20)

gives that

$$\sum_{j=0}^{p} \left| l_{k,j} (x_{k} + s_{k}) \right| \geq \frac{(1 - \eta) k_{c} \left\| g_{k} \right\|}{k_{ef} (\beta + 1)^{2} \Delta_{k}}$$
(21)

As a consequence, we have, using (21) and (17)

successively, that $\sum_{j=0}^{p} \left| l_{k,j} (x_k + s_k) \right| \ge s(p \Lambda + 1)$.

Moreover, (6) also implies that

 $\sum_{j=0}^{p} l_{k,j}(x_k + s_k) = 1$. We may use this equality, and

$$j^* = \arg \max_{j=0,...,p} |l_{k,j}(x_k + s_k)|,$$
 then

$$\left|l_{k,\tau}\left(x_{k}+s_{k}\right)\right|\geq\Lambda$$
 for

$$\tau = \arg \max_{\substack{j=0,\ldots,p\\j\neq j^*}} \left| l_{k,j} (x_k + s_k) \right|, \quad \text{which together}$$

with (19) and (20), implies $E_k \neq \phi$.

IV. CONCLUSIONS

In this paper, we proposed a non-monotone self-correcting wedge trust-region method for unconstrained derivative-free optimization and analyzed the properties of the new algorithm. It is efficient for solving these unconstrained derivative-free optimization problems. The global convergence result of the new proposed method is proved under some mild conditions. In the near future, we will learn and seek more efficient non-monotone strategies for the wedge trust region methods to settle the unconstrained derivative-free optimization problem.

ACKNOWLEDGMENTS

This work is supported by the National Natu ral Science Foundation of China (61473111) and the Natural Science Foundation of Hebei Province (Grant No. A2014201003, A2014201100).

REFERENCES

- S. M. Wild. Derivative-free Optimization Algorithm for Computationally Expensive Functions. Phd thesis, Cornell University, Ithaca, NY, USB (2008).
- [2] S. M. Wild. Mnh: a derivative-free optimization algorithm using minimal norm Hessians. In Tenth Copper Mountain Conference on Iterative Methods,(2008).
- [3] R. M. Lewis and V. Torczon. A globally convergence augmented lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM J. on Optimization, 12:1075-1089,(2002).
- [4] M. Marazzi and J. Nocedal: Wedge trust region methods for derivative free optimization, Math. Program, Series A, 91, p. 289-305 (2002).
- [5] B. Colson and ph. L. Toint. A derivative-free algorithm for sparse unconstrained optimization problems. In A. H. Siddiqi and M. Kocvara, editors, Trends in Industrial and Applied Mathematics, Applied Optimization, pages 131-149, Dordrecht, The Netherlands,(2002).
- [6] K. Scheinberg and Ph. L. TOINT, Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization, SIAM Journal on Optimization, 20: 3512-3532, (2010).
- [7] M. Marazzi and J. Nocedal, Wedge trust region methods for derivative free optimization, Mathematical Programming, 91: 289-305,(2002).
- [8] H.C. Zhang, W.W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim. 14(4) 1043-1056, (2004).
- [9] P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite interpolation in Rⁿ with applications to finite element methods, Archive for Rational Mechanics and Analysis, 46: 178-199, (1972).
- [10] M. J. D. Powell, On the Lagrange function of quadratic models that are defined by interpolation, Optimization Methods, and Software, 16: 289-309,(2001).
- [11] R. Oeuvray, Trust-Region Methods Based on Radial Basis Function with Application to Biomedical Imaging, PhD thesis, Institut de Mathematiques, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, (2005).
- [12] A. R. Conn, K. Scheinberg and L. N. Vicente, Introduction to Derivative-Free Optimization, MPS-SIAM, Series on

Optimization, SIAM, Philadephia, PA, USA, (2008).

- [13] W. Sun, Q. K. Du and J. R. Chen Computational Methods, Science Press, Beijing, (2007).
- [14] P. G. Ciarlet and P. A. Raviart. General Lagrange and Hermite interpolation in Rⁿ with applications to finite element methods. Archive for Rational Mechanics and Analysis, 46(3):177-199, (1972).
- [15] A. R. Conn, K. Scheinberg, and L,N, Vicente. Introduction to Derivative-free Optimization. MPS-SIAM Series on Optimization. SIAM,philadephia, PA, USA,(2008).
- [16] N.Z. Gu, J. T. Mo, Incorporating nonmonotone strategies into the trust region for unconstrained optimization, Computers and Mathmatics with Applications 55: 2158-2172, (2008).
- [17] Sun W, Yuan Y. Optimization Theory and Methods: Nonlinear Programming. New York: Spinger, (2006).
- [18] Andrei N. Scaled conjugate gradient algorithms for unconstrained optimization. Comput Optim Appl, 38: 401-416,(2007).