
International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 2, March to April 2015

6

www.ijresonline.com

Model-Based Architecture for Building

Natural Language Interface to Oracle

Database

S. Aquter Babu1 , Dr. C. Lokanatha Reddy2
1 Assistant Professor, Dept. of Computer Science, Dravidian University, Kuppam, Andhra Pradesh, India

2
 Professor, Dept. of Computer Science, Dravidian University, Kuppam, Andhra Pradesh, India

Abstract:

Structured Query Language (SQL) is a

very standard interface since many years to

retrieve information from a database. But, to use

SQL to formulate query, one should know the

syntax of SQL and Database Schema. However,

not everybody is able to write such queries in SQL,

especially those who lack computer background.

To override the complexity of SQL, and to

facilitate easy retrieval of information from

database, Natural Language Interfaces to

Databases (NLIDBs) have been developed. A

Natural Language Interface to Database (NLIDB)

allows the user to retrieve information from the

database by submitting questions in a natural

language such as English. Many Natural Language

Interface to a Database (NLIDB) systems were

developed since 1960’s with different architectures

such as Pattern-Matching architecture, Syntax-

based architecture, Semantic Grammar architecture

and Intermediate Representation Languages (IRL)

architecture. Developing a NLIDB with one of

these architectures requires more effort and time.

This has motivated us to propose a novel

architecture called Model-based Architecture

that can be used to develop a Natural Language

Interface to Oracle Database (NLIOD) with less

effort and time. This paper presents the Model-

based Architecture for NLIOD.

Keywords: database, database management

system (DBMS), Structured Query Language (SQL),

natural language interface, architecture, models,

extensibility, portability.

I. INTRODUCTION

Since a long time ago, many organizations

are storing their data in the databases to

facilitate their users to easily retrieve and

manipulate data. Databases contain a collection of

related data, stored in a systematic way to model a

part of the world. Now a days, databases have

become one of the major sources of information.

Recently, with the growth of technologies such as

computers and laptops, personal digital assistants

(PDAs), cellular phones, and the Internet,

information can be accessed almost anywhere, at

anytime, by anybody, including those who do not

necessarily have computer backgrounds.

Access to the information stored in a

database has traditionally been achieved by writing

quires using formal query languages, such as SQL

(Structured Query Language). This formal query

language interface forces the users to have cognitive

skills that the typical users do not possess. The

cognitive load demanded by exiting database query

languages (such as SQL) during data retrieval

includes the following:

 A good understanding of database schema

design.

 A more or less extensive knowledge of

database systems, database query language

syntax and structure.

 The ability to manually or mentally create

message graphs to join tables and to

express desired database requests.

It is very difficult for a common person

to learn querying using SQL because he/ she

may be unaware of the database structure namely

tables, their corresponding attributes and data

types, primary keys and foreign keys and more.

NLIDBs have been developed as a solution to

the problem of accessing information from a

database in a simple way, allowing any type of

users to retrieve information from a database by

typing and submitting questions in a natural

language such as English.

Many Natural Language Interface to a

Database (NLIDB) systems were developed since

1960‟s such as LUNAR, LADDER etc. with

different architectures such as the following.

 Pattern-Matching Architecture

 Syntax-based Architecture

 Semantic Grammar Architecture

 Intermediate Representation Languages

(IRL) Architecture

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 2, March to April 2015

7

www.ijresonline.com

We have developed a Natural Language

Interface to Oracle Database (NLIOD) using

Model-based architecture. The NLIOD system

accepts a natural language sentence such as a

sentence written in English language from the user,

analyses it using rules and models and builds an

SQL query for the Oracle database. The core

functionality of the system is based on rules and

models. The system administrator will define the

rules and models by analyzing the database. This

paper presents the Model-based Architecture for

NLIOD.

II. BACKGROUND

 This section presents Some History of

NLIDBs.

A. Late 1960s and Early 1970s

Prototype NLIDBs had already appeared in

the late sixties and early seventies. The best known

NLIDB of that period is LUNAR[1], a natural

language interface to a database containing chemical

analyses of moon rocks. LUNAR and other early

natural language interfaces were each built having a

particular database in mind, and thus could not be

easily modified to be used with different databases.

B. Late 1970s

By the late seventies several more NLIDBs

had appeared. RENDEZVOUS[2] engaged the user

in dialogues to help him/her formulate his/her queries.

LADDER[5] could be used with large databases, and

it could be configured to interface to different

underlying database management systems (DBMSs).

LADDER used semantic grammars, a technique that

interleaves syntactic and semantic processing.

Although semantic grammars helped to implement

systems with impressive characteristics, the resulting

systems proved difficult to port to different

application domains. Indeed, a different grammar had

to be developed whenever LADDER was configured

for a new application. As researchers started to focus

on portable NLIDBs, semantic grammars were

gradually abandoned. PLANES[3] and PHILIQA[4]

were some of the other NLIDBs that appeared in

the late seventies.

C. Mid 1980s

In the mid-eighties NLIDBs were a very

popular area of research, and numerous prototype

systems were being implemented. A large part of the

research of that time was devoted to portability issues.

Some Systems that appeared in the mid-eighties were

TEAM[7], ASK[8], JANUS[9], DATALOG[10],

EUFID[11], and many others.

D. Some other NLIDB systems

1) NALIX

NALIX[13] (Natural Language Interface

for an XML Database) is an NLIDB system

developed at the University of Michigan, Ann

Arbor by Yunyao Li, Huahai Yang, and H. V.

Jagadish in 2006. The database used for this system

is extensible markup language (XML) database with

Schema- Free XQuery as the database query

language. Schema-Free XQuery is a query language

designed mainly for retrieving information in XML.

The idea is to use keyword search for databases.

However, pure keyword search certainly cannot be

applied. Therefore, some richer query mechanisms

are added.

Given a collection of keywords, each

keyword has several candidate XML elements to

relate. All of these candidates are added to MQF

(Meaningful Query Focus), which will automatically

find all the relations between these elements. The

main advantage of Schema-Free Xquery is that it is

not necessary to map a query into the exact database

schema, since it will automatically find all the

relations given certain keywords.

NALIX can be classified as a syntax based

system, since the transformation processes are done

in three steps: generating a parse tree, validating the

parse tree, and translating the parse tree to an

XQuery expression. However, NALIX is different

from the general syntax based approaches; in the

way the system was built: NALIX implements a

reversed-engineering technique by building the

system from a query language toward the sentences.

2) PRECISE

PRECISE [12] is a system developed at the

University of Washington by Ana-Maria Popescu,

Alex Armanasu, Oren Etzioni, David Ko, and

Alexander Yates in 2004. The target database is in

the form of a relational database using SQL as the

query language. It introduces the idea of

semantically tractable sentences which are

sentences that can be translated to a unique

semantic interpretation by analyzing some lexicons

and semantic constraints.

PRECISE was evaluated on two database

domains. The first one is the ATIS domain, which

consists of spoken questions about air travel, their

written forms, and their correct translations in SQL

query language. In ATIS domain, 95.8% of the

questions were semantically tractable. Using these

questions gives PRECISE 94% precision. The

second domain is the GEOQUERY domain. This

domain contains information about U.S. Geography.

77.5% of the questions in GEOQUERY are

semantically tractable.

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 2, March to April 2015

8

www.ijresonline.com

The strength of PRECISE is based on the

ability to match keywords in a sentence to the

corresponding database structures. This process is

done in two stages, first by narrowing the

possibilities using Maxflow algorithm and second by

analyzing the syntactic structure of a sentence.

Therefore PRECISE is able to perform impressively

in semantically tractable questions.

As other NLIDB systems, PRECISE has its

own weaknesses. While it is able to achieve high

accuracy in semantically tractable questions, the

system compensates for the gain in accuracy at the

cost of recall. Another problem is as PRECISE

adopts a heuristic based approach, the system suffers

from the problem of handling nested structures.

III. NATURAL LANGUAGE INTERFACE

TO ORACLE DATABASE USING

MODEL-BASED ARCHITECTURE

This section discusses the proposed novel

Model-based architecture that has been used to

develop a Natural language Interface to Oracle

Database (NLIOD).

The NLIOD system, which is developed

using Model-based architecture, accepts a natural

language sentence such as a sentence written in

English language from the user, analyses it using

rules and models and builds an SQL query for the

Oracle database. The core functionality of the system

is based on rules and models. The system

administrator will define the rules and models by

analyzing the database.

The following figure 1 shows the

functions of the NLIOD system.

Figure 1: Functions of the NLIOD system

The NLIOD functions as follows.

a) NLIOD accepts Natural Language Query

(NL Query) such as English query from the

user.

b) NLIOD converts the NL Query to SQL

Query and sends the SQL query to

ORACLE DBMS Software.

c) ORACLE DBMS software executes the

SQL query and retrieves data from the

Oracle Database.

d) ORACLE DBMS sends the results of the

SQL query to the NLIOD

e) The NLIOD then shows the results to the

user.

The following figure 2 shows the

Model-based architecture used by the NLIOD

system.

NLIOD

ORACLE

DBMS

ORACLE

Database

Users

NL Query

Results

ResultsSQL Query

data

Rules &

Models

System

Administrator

ORACLE

Database

Figure 2: Model-based architecture used by the

NLIOD system

In Model-based architecture, the system

administrator will define the following by

analyzing the data and relationships among the

tables in the ORACLE Database.

 Rules related to Database Schema

 Rules related to the action verbs

 Semantic sets

 Default attributes and

 Models

A. Oracle Database

Oracle Database is a database created

using Oracle DBMS software. For the purpose of

demonstration and implementation of Model-based

architecture, We have considered the Oracle

Database called Company database consisting of

the following tables.

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 2, March to April 2015

9

www.ijresonline.com

Figure 3: Company Database Schema

We have assumed the following rules in

the company.

 One employee can work on several projects.

 One project can have several employees.

This shows that there exists M:N (many-

to-many) relationship between employee and project

entity types. The relationship type works_on shows

which employees are related to which projects.

The primary and foreign keys of the

above tables are follows.

Table Primary Foreign

 Key Key(s)

==============================

employee employee_id --- NIL ---

project project_id --- NIL ---

works_on {employee_id, project_id}

 employee_id, project_id

B. Rules Related to Database Schema

These rules show the relationships among

the tables in the database. For example, employee

table and project table are related in the Company

database. These rules are developed by the system

administrator by using Primary Key and Foreign Key

information in the database schema.

C. Rules Related to action verbs

These rules show how tables in the

database are related with action verbs such as

“work”. For example, employee table and project

table are related with the action verb “work”.

D. Semantic Sets

The semantic set contains synonyms of a

word. For each table name and attribute name, a

semantic set is defined by the system administrator.

The following table 1 shows the semantic

sets for each table name and attribute name of

company database.

Semantic

set name

Elements

employee

employee,

employees, worker,

staff member

employee_id
employee_id,

number

name
name, first name, last

name, full name

designation
designation, job, job

title, job description

salary

salary, pay, income,

wage, earnings,

money, remuneration,

payment

project
project, projects,

venture

project_id
project_id,

number

title
title, name,

description

budget
budget, funds,

amount
Table 1 : Semantic sets for each table name and

attribute name of company database

E. Default Attributes

The system administrator will define

default attributes for each of the tables in the

database.

The following Table 2 shows the default

attributes for each of the tables in the company

database.

Table name Default

attribute

Employee name

Project title
Table 2: Default attributes for each of the tables in

the company database

The default attribute is used by the

system when it is not able to identify the

attribute of a table in the given input sentence.

This is the case in the question Who works on

project „bank‟? NLIOD identifies that the

words “works on” are related to the tables

employee and project, but it does not identify

their attributes. In this situation, the default

attribute of employee table i.e., name is used.

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 2, March to April 2015

10

www.ijresonline.com

F. Models

The NLIOD uses four models to covert

the English sentence to SQL query. They are

as follows.

 Model-I: The {table} model

 Model-II: The {attribute}-of-{table} model

 Model-III: The {attribute}-of-{table1}-of-

{table2} model

 Model-IV: The action model [table1]{action_verb}

{table2}

For each of the above models, a matching

SQL template is defined by the system

administrator and is stored in the system

configuration.

The following table 3 shows four

examples for user sentences that match with each

of the above four models.

Model Example user sentence that

matches with the model

Model-I
List all employees in the

company

Model-II
What is the salary of

employee „raju‟?

Model-III

What is the city of the

employee of project

„hotel‟?

Model-IV
Which employee works

on project „bank‟?
Table 3: Examples for user sentences that match

with each of the four models

The NLIOD uses the above rules and

models defined by the system administrator to

translate the user input sentence into database

query language such as SQL. The SQL query is

sent to the RDBMS such as Oracle for execution

and display of the results.

IV. THE NLIOD IMPLEMENTATION AND

EXPERIMENTAL RESULTS

The Natural language Interface to Oracle

Database (NLIOD) using the Model-based

architecture has been developed for experimental

purpose using Visual Basic 6.0 as front-end and

Oracle 11g as back-end.

The system administrator will create

several tables in the database called system

configuration tables to store the information

related to rules and models.

For the purpose of demonstration,

Model-I is described below.

Model-I i.e., the {table} model has the

following two forms of SQL templates.

Figure 4: SQL Templates of Model-I : The

{table} model

The following are some examples for

natural language sentences that are related to

form1 of this model.

 List all employee details

 List employees of the company

 Show all employee details

 List project details

 Employee details please

 Employee

 Employees

 Show me the details of employees

following are some examples for natural

language sentences that are related to form2 of

this model.

 Show employee „raju‟

 List employee „suresh‟

 Employee „raju‟

 Show the details of employee „raju‟

Algorithm for Model-I:

1. if only one table name and no attribute names, action verbs and value of default attribute found

then

 begin

1.1) retrieves the related SQL template i.e., form1 SQL template from the system

configuration file

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 2, March to April 2015

11

www.ijresonline.com

1.2) populates the template with table name

end

 else

 if only one table name and value of default attribute and no attribute names and no action verbs

found then

 begin

1.3) retrieves the related SQL template i.e., form2 SQL template from the system

configuration file

1.4) populates the template with table name, default attribute and value of default

attribute

 end

Algorithm for NLIOD

The following is the algorithm for NLIOD.

1. accepts the natural language sentence such as English sentence from the user

2. divides the sentence into tokens

3. scans the token list and identifies the table names, attribute names, action verbs and values of

default attributes using rules

4. if no table names or no action verbs or more than two table names found then

 begin

4.1) Write “invalid sentence”

4.2) Exit

 End

5. if Model-I is satisfied then

 5.1) Execute algorithm for Model-I

 else

 if Model-II is satisfied then

 5.2) Execute algorithm for Model-II

 else

 if model-III is satisfied then

 5.3) Execute algorithm for Model-III

 else

 if Model-IV is satisfied then

 5.4) Execute algorithm for Model-IV

 else

 begin

5.5) write “Invalid sentence”

5.6) Exit

 End

6. Sends the SQL query to Oracle RDBMS

7. receives the result set from the Oracle RDBMS

8. displays the result set on the screen

A. Examples

Example 1: List all employee details

Result : Pass

Model used : model_1_a

Query generated: select * from employee

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 2, March to April 2015

12

www.ijresonline.com

Screen Output:

Example 2: worker details please

Result : Pass

Model used : model_1_a

Query generated: select * from employee

Example 3: show all doctor details

Result : Fail

Note : no table name is identified by the NLIOD

system

Example 4: show employee ‘raju’

Result : Pass

Model used : model_1_b

Query generated: select * from employee where

employee.name = „raju‟

Example 5: list employee ‘ramesh’

Result : Pass

Model used : model_1_b

Query generated: select * from employee where

employee.name = „ramesh‟

V. CONCLUSIONS

The Model-based architecture used in the

development of NLIOD has the following

characteristics.

 The system administrator can quickly develop

system configuration tables such as schema

rules table, action verb tables, semantic set table,

default attribute table etc. by analyzing any

database for which natural language interface

is required.

 The system administrator can quickly develop

a table that contains information about

models.

 The Model-based architecture uses the system

configuration tables and models table to

convert the natural language query such as

query in English into SQL query and

generates the results.

 The Model-based architecture requires little

effort and time to develop any NLIDB such

as NLIOD compared to other architectures

such as Pattern-matching architecture, Syntax-

based architecture etc.

 The Model-based architecture supports

knowledge-domain portability. It can easily be

configured for use in a wide variety of

knowledge domains such as bank database,

hotel database etc.

 The Model-based architecture supports

DBMS portability. It can be easily modified to

be used with different underlying database

management systems (DBMSs) such as SQL

Server, Sybase etc.

 The Model-based architecture supports

extensibility. It can easily be extended by

adding more models to support many

different types of English sentences.

A. Performance of NLIOD

The NLIOD system performance was quite

impressive; it managed to handle 90% of requests

without any errors if the input request matches

with any one of the four models proposed.

If the input request does not match with

any one of the four models proposed, then the

system will display message “Invalid Sentence”.

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 2, March to April 2015

13

www.ijresonline.com

It has been observed that Model-based

architecture used in the development of NLIOD

requires comparatively little effort and time to

develop because of the following reasons.

 The system administrator has to create only

system configuration tables by analyzing the

database for which a natural language

interface is required. It requires less effort

and time.

 In Pattern-matching architecture, one has to

develop a pattern for each attribute and

combination of attributes of each table. In

Model-based architecture, no need to develop

patterns. Many requests in natural language

match with one model.

 In Syntax-based architecture, one has to

develop complex syntax. In Model-based

architecture, no need to develop syntax.

 In Semantic Grammar architecture, one has to

develop detailed semantic grammar. In

Model-based architecture, no need to develop

semantic grammar.

 In Intermediate Representation Language

architecture, one has to develop an intermediate

language to convert natural language query

into SQL query. In Model-based architecture,

no need to develop an intermediate language

and natural language query is directly

converted to SQL query.

B. Limitations of NLIOD

The only limitation of NLIOD is that it

can not process the requests that do not match

with any of the four models proposed. This

limitation can be overcome by adding more

models to the NLIOD system.

REFERENCES
[1] W.A. Woods, R.M. Kaplan, and B.N. Webber. The Lunar

Sciences Natural Language Information System: Final

Report. BBN Report 2378, Bolt Beranek and Newman

Inc., Cambridge, Massachusetts, 1972.

[2] E.F. Codd. Seven Steps to RENDEZVOUS with the

Casual User. In J. Kimbie and K. Koffeman, editors, Data

Base Management. North-Holland Publishers, 1974.

[3] D.L. Waltz. An English Language Question Answering

System for a Large Relational Database. Communications

of the ACM, 21(7):526–539, July 1978.

[4] R.J.H. Scha. Philips Question Answering System

PHILIQA1. In SIGART Newsletter, no.61. ACM, New

York, February 1977.

[5] G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum.

Developing a Natural Language Interface to Complex

Data. ACM Transactions on Database Systems, 3(2):105–

147, 1978.

[6] I. Androutsopoulos, G.D. Ritchie, and P. Thanisch,

"Natural Language Interfaces to Databases - An

Introduction". Natural Language Engineering, 1(1): 29-81,

Cambridge University Press, 1995.

[7] B.J. Grosz, D.E. Appelt, P.A. Martin, and F.C.N. Pereira.

TEAM: An Experiment in the Design of Transportable

Natural-Language Interfaces. Artificial Intelligence,

32:173–243, 1987.

[8] B.H. Thompson and F.B. Thompson. ASK is

Transportable in Half a Dozen Ways. ACM Transactions

on Office Information Systems, 3(2):185–203, April 1985.

[9] P. Resnik. Access to Multiple Underlying Systems in

JANUS. BBN report 7142, Bolt Beranek and Newman

Inc., Cambridge, Massachusetts, September 1989.

[10] C.D Hafner and K. Godden. Portability of Syntax and

Semantics in Datalog. ACM Transactions on Office

Information Systems, 3(2):141–164, April 1985.

[11] M. Templeton and J. Burger. Problems in Natural

Language Interface to DBMS with Examples from

EUFID. In Proceedings of the 1st Conference on Applied

Natural Language Processing, Santa Monica, California,

pages 3–16, 1983.

[12] Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,

David Ko, and Alexander Yates, Modern Natural

Language Interfaces to Databases: Composing Statistical

Parsin with Semantic Tractability, COLING (2004)

[13] Yunyao Li, Huahai Yang, and H.V. Jagadish, NALIX:

An Interactive Natural Language Interface for querying

XML , SIGMOD, 2005

